自定义类型—结构体

目录

1 . 结构体类型的声明

1.1 结构的声明

1.2 结构体变量的创建与初始化

1.3  结构体的特殊声明

1.4 结构体的自引用

2. 结构体内存对齐

2.1 对齐规则

2.2 为什么存在内存对齐

2.3 修改默认对齐数

3. 结构体传参

4.结构体实现位段

4.1 位段的内存分配


1 . 结构体类型的声明

1.1 结构的声明

struct tag
{member-list;
}variable-list;

假如描述一个学生

struct Stu 
{int age;char name[20];char sex[5];char id[20];
}

1.2 结构体变量的创建与初始化

struct Stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
};
int main()
{//按照结构体成员的顺序初始化struct Stu s = { "张三", 20, "男", "20230818001" };printf("name: %s\n", s.name);printf("age : %d\n", s.age);printf("sex : %s\n", s.sex);printf("id : %s\n", s.id);//按照指定的顺序初始化struct Stu s2 = { .age = 18, .name = "lisi", .id = "20230818002", .sex = "⼥" };printf("name: %s\n", s2.name);printf("age : %d\n", s2.age);printf("sex : %s\n", s2.sex);printf("id : %s\n", s2.id);return 0;
}

1.3  结构体的特殊声明

在声明结构体的时候,可以进行不完全声明(又称匿名结构体)

struct
{int a;char b;float c;
}x;struct
{int a;char b;float c;
}a[20], * p;

上述两个结构体在声明的时候省略了结构体标签

在某些情况下,如果只是想使用一次结构体,就可以使用匿名结构体

在此基础上,下面代码合法吗

p = &x;
编译器会把上面的两个声明当成完全不同的两个类型,所以是非法的。
匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使用⼀次。

1.4 结构体的自引用

结构体中包含一个类型为该结构体本身成员是否可行?

看下列代码

struct Node
{int data;struct Node next;
}

 分析一下不难发现,其实是不行的,因为一个结构体中再包含一个同类型的结构体变量,这样结

构体变量的大小就会无穷大。

struct S
{int n;struct S* next;
};

但是如果时包含和自己相同类型的指针,是可行的,在x86或x64的环境下,指针的大小无非就是

4/8字节。

 在结构体自引用使用的过程中,夹杂了 typedef 对匿名结构体类型重命名,也容易引入问题,看看

下面的代码,可行吗
typedef struct
{int data;S* next;
}S;
是不行的,因为S是对前面的匿名结构体类型的重命名产生的,但是在匿名结构体内部提前使
用Node类型来创建成员变量,这是不行的。

2. 结构体内存对齐

看一段代码

struct S1
{char c1;int i;char c2;
}s;int main()
{printf("%zd \n",sizeof(s));return 0;
}

如果只按成员的大小来看的话,该结构体应该只占用6个字节就够了

但程序运行起来后可以发现是12个字节。

这就涉及到结构体内存对齐。

2.1 对齐规则

1. 结构体的第⼀个成员对齐到和结构体变量起始位置偏移量为0的地址处
2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
对齐数 = 编译器默认的⼀个对齐数与该成员变量大小的较小值。
VS 中默认的值为 8
- Linux中 gcc 没有默认对齐数,对齐数就是成员自身的大小
3. 结构体总大小为最大对齐数(结构体中每个成员变量都有⼀个对齐数,所有对齐数中最大的)的
整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构
体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。
一共9个字节,按照规则3来说,为最大对齐数的整数倍,那就是3 * 4 = 12个字节
再来看几个例子
struct S2
{char c1;char c2;int i;
};

一共8个字节,按照规则3来说,为最大对齐数的整数倍,那就是2* 4 = 8个字节

struct S3
{double d;char c;int i;
};

一共15个字节,按照规则3来说,为最大对齐数的整数倍,那就是4* 4 = 16个字节

struct S4
{char c1;struct S3 s3;double d;
};

其中嵌套了s3,已经知道s3的大小是16个字节,其中最大对齐数是8,那么就从偏移量8开始占16个字节。

一共32个字节,按照规则3来说,为最大对齐数的整数倍,那就是4* 8 = 32个字节

2.2 为什么存在内存对齐

1. 平台原因 (移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特
定类型的数据,否则抛出硬件异常。
2. 性能原因:
数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器
需要作两次内存访问;而对齐的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字
节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对齐成8的倍数,
那么就可以用⼀个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可
能被分放在两个8字节内存块中。
总体来说:结构体的内存对齐是拿空间来换取时间的做法。
个人观点:主要原因还是第二个
那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:
让占⽤空间小的成员尽量集中在⼀起
如上例 S1,S2
struct S1
{char c1;int i;char c2;
}s;struct S2
{char c1;char c2;int i;
};

同样的成员类型,我们可以发现S1占12个字节,S2就只占8个字节了。

2.3 修改默认对齐数

 #pragma 这个预处理指令,可以改变编译器的默认对齐数。

#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1
struct S
{char c1;int i;char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{printf("%d\n", sizeof(struct S));return 0;
}

3. 结构体传参

struct S
{int data[1000];int num;
};
struct S s = { {1,2,3,4}, 1000 };
//结构体传参
void print1(struct S s)
{printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{printf("%d\n", ps->num);
}
int main()
{print1(s); //传结构体print2(&s); //传地址return 0;
}

print2更好,因为print1在传参时是传值调用,这个值有多大就得开辟多大的空间,仅是一个data数

组就要了4000个字节的空间。

而print2在传参的时候是传址调用,传地址过去,大小无非就是4 / 8个字节,效率更高。

函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递⼀个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的
下降。
结论:在进行结构体传参的时候,尽量传结构体的地址。

4.结构体实现位段

4.1 位段的定义

位(二进制位)

位段的声明和结构是类似的,有两个不同:
1. 位段的成员必须是 int unsigned int signed int ,在C99中位段成员的类型也可以选择其他类
型。
2. 位段的成员名后边有⼀个冒号和⼀个数字。
struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};struct B
{int _a;int _b ;int _c ;int _d ;
};
int main()
{printf("%zd\n", sizeof(struct A));printf("%zd\n", sizeof(struct B));return 0;
}
A就是⼀个位段类型。
后面跟的数字是代表分配多少比特位
我们来看看效果
可见 ,位段是专门用来节省内存空间的。
但是 ,如果只按照分配的比特位来看,2+5+10+30 = 47 ,应该只分配6个字节就够了,为什么是8
个。这就涉及到了位段的内存分配

4.1 位段的内存分配

1. 位段的成员可以是 int unsigned int signed int 或者是 char 等类型

2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
一个例子
struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};int main()
{struct S s = { 0 };s.a = 10; s.b = 12;s.c = 3;s.d = 4;printf("%zd\n", sizeof(s));return 0;
}

4.2 位段的跨平台问题
1. int 位段被当成有符号数还是无符号数是不确定的。
2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会
出问题。)
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当⼀个结构包含两个位段,第⼆个位段成员比较大,无法容纳于第⼀个位段剩余的位时,是舍弃
剩余的位还是利用,这是不确定的。
结论:跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存
在。

4.3 位段的应用

下图是网络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要几个bit位就能描述,这

里使用位段,能够实现想要的效果,也节省了空间,这样网络传输的数据报大小也会较小⼀些,对

网络的畅通是有帮助的。

4.4 位段的使用注意事项

位段的几个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些
位置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。
所以不能对位段的成员使用&操作符,这样就不能使用scanf直接给位段的成员输⼊值,只能是先输
入放在⼀个变量中,然后赋值给位段的成员。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/303339.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

idea中jdk版本的配置

配置JDK版本的步骤如下&#xff1a; 下载JDK安装文件&#xff1a;首先&#xff0c;需要从Oracle官方网站&#xff08;https://www.oracle.com/java/technologies/javase-jdk8-downloads.html&#xff09;下载适合您操作系统的JDK版本。 安装JDK&#xff1a;双击下载的安装文件…

LangChain-15 Manage Prompt Size 管理上下文大小,用Agent的方式询问问题,并去百科检索内容,总结后返回

背景描述 这一节内容比较复杂&#xff1a; 涉及到使用工具进行百科的检索&#xff08;有现成的插件&#xff09;有AgentExecutor来帮助我们执行后续由于上下文过大&#xff0c; 我们通过计算num_tokens&#xff0c;来控制我们的上下文 安装依赖 pip install --upgrade --qu…

Cherno CPP学习笔记-01-背景知识

0、工具网站收集 C语言版本特性 https://en.cppreference.com https://www.cplusplus.com https://www.tutorialspoint.com/cplusplus https://www.learncpp.com https://github.com/fffaraz/awesomecpp https://stackoverflow.com 网页CPP编译器 [C] gcc 12.1.0 - Wa…

SpringBoot集成Skywalking日志收集

在实际项目中&#xff0c;为了方便线上排查问题&#xff0c;尤其是微服务之间调用链路比较复杂的系统中&#xff0c;通过可视化日志的手段仍然是最直接也很方便的排查定位问题的手段&#xff0c;比如大家熟悉的ELK就是一种比较成熟的可视化日志展现方式&#xff0c;在skywalkin…

在Windows电脑上上传iOS应用至App Store

引言 &#x1f4f1; 使用UniApp开发iOS应用十分便捷&#xff0c;一套代码即可兼容多个平台。然而&#xff0c;UniApp开发iOS应用需要进行证书打包和将IPA文件上传至App Store&#xff0c;这两个步骤通常需要在Mac电脑上完成。那么&#xff0c;如果我们使用的是Windows开发环境…

Linux:gcc

Linux&#xff1a;gcc gcc概述语言发展史gcc的编译过程预处理编译汇编 gcc的链接过程动态库与静态库 gcc概述 GCC&#xff08;英文全拼&#xff1a;GNU Compiler Collection&#xff09;是 GNU 工具链的主要组成部分&#xff0c;是一套以 GPL 和 LGPL 许可证发布的程序语言编译…

C语言 | Leetcode C语言题解之第17题电话号码的字母组合

题目&#xff1a; 题解&#xff1a; char phoneMap[11][5] {"\0", "\0", "abc\0", "def\0", "ghi\0", "jkl\0", "mno\0", "pqrs\0", "tuv\0", "wxyz\0"};char* digits…

【算法】双指针算法

个人主页 &#xff1a; zxctscl 如有转载请先通知 题目 1. 283. 移动零1.1 分析1.2 代码 2. 1089. 复写零2.1 分析2.2 代码 3. 202. 快乐数3.1 分析3.2 代码 4. 11. 盛最多水的容器4.1 分析4.2 代码 5. LCR 179. 查找总价格为目标值的两个商品5.1 分析5.2 代码 6. 15. 三数之和…

MySQL 优化总结

目标知识 MySQL执行流程图 MySQL 优化成本路线图 优化成本&#xff1a;硬件>系统配置>数据库表结构>SQL及索引。优化效果&#xff1a;硬件<系统配置<数据库表结构<SQL及索引。 MySQL 五大优化原则 减少数据返回&#xff1a;设置合理字段数据类型、启用压缩…

C++——list类及其模拟实现

前言&#xff1a;这篇文章我们继续进行C容器类的分享——list&#xff0c;也就是数据结构中的链表&#xff0c;而且是带头双向循环链表。 一.基本框架 namespace Mylist {template<class T>//定义节点struct ListNode{ListNode<T>* _next;ListNode<T>* _pre…

京东云16核64G云服务器租用优惠价格500元1个月、5168元一年,35M带宽

京东云16核64G云服务器租用优惠价格500元1个月、5168元一年&#xff0c;35M带宽&#xff0c;配置为&#xff1a;16C64G-450G SSD系统盘-35M带宽-8000G月流量 华北-北京&#xff0c;京东云活动页面 yunfuwuqiba.com/go/jd 活动链接打开如下图&#xff1a; 京东云16核64G云服务器…

算法四十天-删除排序链表中的重复元素

删除排序链表中的重复元素 题目要求 解题思路 一次遍历 由于给定的链表是排好序的&#xff0c;因此重复的元素在链表中的出现的位置是连续的&#xff0c;因此我们只需要对链表进行一次遍历&#xff0c;就可以删除重复的元素。 具体地&#xff0c;我们从指针cur指向链表的头节…

Netty学习 应用Demo之“自动回复”聊天业务

Netty实现自动回复步骤 主要分成五步 1、创建EventLoopGroup实现循环组 管理EventLoop线程 2、创建Bootstrap &#xff0c;Bootstrap对于服务端而言&#xff0c;先后设置其中的线程组group、通道channel、处理器handler、客户端通道对应的处理器childHandler 3、自定义服务器接…

C#操作MySQL从入门到精通(6)——对查询数据进行排序

前言 在和MySql数据库交互的过程中,查询数据是使用最频繁的操作,并且我们经常需要对查询到的数据进行排序后输出,比如我想查询1列数据的最小值,那么我可以将查询到的数据进行升序(从小到大)排列,然后取第一个数据就是最小值。本文详细介绍了对查询数据进行排序的各种操…

HarmonyOS4-Stage模型

Stage模型介绍【舞台模型】&#xff1a; Stage模型 应用配置文件 全局应用配置文件&#xff1a; 模块配置文件&#xff1a; Ability生命周期 页面及组件的生命周期&#xff1a; 启动模式&#xff1a; "launchType": "multiton" // 会重新建&#xff0c…

本地项目提交 Github

工具 GitIdeaGithub 账号 步骤 使用注册好的 Github 账号&#xff0c;登陆 Github&#xff1b; 创建 Repositories (存储库)&#xff0c;注意填写图上的红框标注&#xff1b; 创建完成之后&#xff0c;找到存储库的 ssh 地址或 https 地址&#xff0c;这取决于你自己的配置…

matlab:有限差分求解纳维尔(Navier)边界的双调和(Biharmonic)方程,边值为零

我们考虑如下形式的双调和方程的数值解 其中&#xff0c;Ω是欧氏空间中的多边形或多面体域&#xff0c;在其中&#xff0c;d为维度&#xff0c;具有分段利普希茨边界&#xff0c;满足内部锥条件&#xff0c;f(x) ∈ L2(Ω)是给定的函数&#xff0c;∆是标准的拉普拉斯算子。算…

javaScript手写专题——实现instanceof/call/apply/bind/new的过程/继承方式

目录 原型链相关 手写instanceof 实现一个_instance方法&#xff0c;判断对象obj是否是target的实例 测试 手写new的过程 实现一个myNew方法&#xff0c;接收一个构造函数以及构造函数的参数&#xff0c;返回构造函数创建的实例对象 测试myNew方法 手写类的继承 ES6&…

【单片机】PMS5003,PM2.5传感器数据读取处理

文章目录 传感器介绍数据处理解析pm2.5的代码帮助、问询 传感器介绍 PMS5003是一款基于激光散射原理的数字式通用颗粒物浓度传感器,可连续采集 并计算单位体积内空气中不同粒径的悬浮颗粒物个数,即颗粒物浓度分布,进而 换算成为质量浓度,并以通用数字接口形式输出。本传感器可…

3D Web轻量化引擎HOOPS Commuicator如何从整体装配中创建破碎的装配零件和XML?

前言 虽然可以从某些本机CAD格式&#xff08;其子组件驻留在单独的文件中&#xff0c;例如CATIA V5、Creo - Pro/E、NX或SolidWorks&#xff09;创建破碎装配&#xff0c;但无法从整体装配文件&#xff08;例如IFC、Revit&#xff09;创建或3DXML。 本文介绍了一个示例&#…