Python | 超前滞后分析

Nino SST Indices (Nino 1+2, 3, 3.4, 4; ONI and TNI)

有几个指标用于监测热带太平洋,所有这些指标都是基于海表温度(SST)异常在一个给定的区域的平均值。通常,异常是相对于30年的周期来计算的。厄尔尼诺3.4指数(Niño 3.4 index)和海洋厄尔尼诺指数(Oceanic Niño Index (ONI))是定义厄尔尼诺和拉尼娜事件最常用的指数。其他index用于帮助描述每个事件的独特性质。

oni.monthly.smoo_stro

El Niño 1、2、3和4 的范围如下所示:

El Niño index regions

Niño 1+2 (0-10S,90W-80W) :

  • 厄尔尼诺1 + 2区域是Niño海表温度区域中最小和最东部的区域,与南美洲沿海地区相对应,在那里El Niño,首先被当地居民识别发现。这一指数往往是Niño海表温度指数中变化最大的。

Niño 3(5N-5S,150W-90W) :

  • 这个区域曾经是监测和预测El Niño现象的主要焦点,但是研究人员后来了解到,ENSO 海洋-大气耦合相互作用的关键区域位于更西部(Trenberth,1997)。因此,Niño 3.4和 ONI 成为定义厄尔尼诺和拉尼娜事件的首选
    Niño 3.4(5N-5S,170W-120W) :
  • Niño3.4异常可以被认为代表从日期线到南美海岸的横跨太平洋的赤道 SST 的平均值。Niño 3.4 index通常使用5个月的连续平均值,El Niño or La Niña是在Niño 3.4 SST 超过 +/-0.4 C 6个月或更长时间内确定的。

ONI (5N-5S,170W-120W) :

  • ONI 使用与厄尔尼诺3.4指数相同的区域。ONI 采用的是连续3个月的平均值,要被归类为全面的厄尔尼诺或拉尼娜现象,异常必须至少连续5个月超过 + 0.5 C 或 -0.5 C。这是美国国家海洋和大气管理局使用的定义。

Niño 4(5N-5S,160E-150W) :

  • 厄尔尼诺4指数捕捉赤道太平洋中部的海表温度异常。这个区域的变化往往比其他厄尔尼诺区域少。

为了定义每个 El Niño or La Niña 事件的独特性,Trenberth 和 Stepaniak (2001)认为,应该将厄尔尼诺3.4指数与他们引入的一个指数结合使用,这个指数被称为跨尼诺指数(Trans-Niño Index,TNI)。TNI 被定义为厄尔尼诺1 + 2和厄尔尼诺4区域之间标准化海表温度异常的差异。TNI 因此测量了赤道太平洋中部和东部海表温度异常的梯度。当海表温度梯度特别大时(比如,由于尼诺4区域的正异常和尼诺1 + 2区域的负异常) ,一些研究人员将该事件归类为“太平洋中部的厄尔尼诺现象”或“El Niño Modoki”,尽管将这种类型的事件作为一个单独的现象进行区分是一个问题或争论。

Nino 3.4 index 的具体计算步骤

  • 1、选择厄尔尼诺3.4区域(5N-5S,170W-120W)的sst月平均数据

  • 2、计算Nino 3.4区域内每个月的异常

  • 3、计算每个月异常的区域平均值

  • 4、去线性趋势化处理(也可以不去)

代码实现过程:


# == netcdf file name and location"
fnc = 'oisst_monthly.nc'
dmask = xr.open_dataset('lsmask.nc')
print(dmask)ds = xr.open_dataset(fnc)
print(ds)# === Climatology and Anomalies
sst = ds.sst.where(dmask.mask.isel(time=0) == 1)
clm = sst.sel(time=slice('1982-01-01','2020-12-01')).groupby('time.month').mean(dim='time')
anm = (sst.groupby('time.month') - clm)
#print(clm)
# -- Detorending
def detrend_dim(da, dim, deg=1):# detrend along a single dimensionp = da.polyfit(dim=dim, deg=deg)fit = xr.polyval(da[dim], p.polyfit_coefficients)return da - fitdef cal_nino34(ds,lat1,lat2,lon1,lon2):ds = ds.sel(lat=slice(lat1,lat2),lon=slice(lon1,lon2))clm = ds.groupby('time.month').mean(dim='time')an_ds = ds.groupby('time.month') - clman_ds = an_ds.mean(('lon','lat'))an_ds = detrend_dim(an_ds,dim='time',deg=1)return an_dsnino3_4 = cal_nino34(sst,5,-5,190,240)
nino3_4.plot()

结果展示:

nino3.4-index

平滑

还可以对于指数进行平滑,使结果看起来更好看一点。如果指数平滑了,后续计算相关相关时也需要对于输入的其他变量进行统一平滑。


ninoSD=nino3_4/nino3_4.std(dim='time')
rninoSD=ninoSD.rolling(time=3, center=True).mean('time')

nino3.4-index-smooth

计算超前滞后

相关性和回归分析部分:

Leading:

  • 通过计算NINO指数(rninoSD)和时间滞后12个时间步长的rdanm之间的相关系数和回归系数。类似地,也计算了时间滞后6个时间步长的相关系数和回归系数。
    Simultaneous:
  • 计算NINO指数(rninoSD)和rdanm之间同期的相关系数和回归系数。
    Lagging:
  • 计算NINO指数(rninoSD)和时间滞后6、12、18个时间步长的rdanm之间的相关系数和回归系数。
# -- Running meanranm = anm.rolling(time=3, center=True).mean('time')
rdanm = detrend_dim(ranm,'time',1)# -- Correlation & Regression# Leading
corM12 = xr.corr(rninoSD, rdanm.shift(time=-12), dim="time")
regM12 = xr.cov( rninoSD, rdanm.shift(time=-12), dim="time")/rninoSD.var(dim='time',skipna=True).values
corM6 = xr.corr(rninoSD, rdanm.shift(time=-6), dim="time")
regM6 = xr.cov( rninoSD, rdanm.shift(time=-6), dim="time")/rninoSD.var(dim='time',skipna=True).values# simultaneous
cor0 = xr.corr(rninoSD, rdanm, dim="time")
reg0 = xr.cov(rninoSD, rdanm, dim="time")/rninoSD.var(dim='time',skipna=True).values# Laging
corP6 = xr.corr(rninoSD, rdanm.shift(time=6), dim="time")
regP6 = xr.cov( rninoSD, rdanm.shift(time=6), dim="time")/rninoSD.var(dim='time',skipna=True).values
corP12 = xr.corr(rninoSD, rdanm.shift(time=12), dim="time")
regP12 = xr.cov( rninoSD, rdanm.shift(time=12), dim="time")/rninoSD.var(dim='time',skipna=True).values
corP18 = xr.corr(rninoSD, rdanm.shift(time=18), dim="time")
regP18 = xr.cov( rninoSD, rdanm.shift(time=18), dim="time")/rninoSD.var(dim='time',skipna=True).values

绘图

# -- figure plotdef makefig(cor, reg,title, grid_space):# 修复 0 度和 360 度经度附近未显示数据的伪影cor = gvutil.xr_add_cyclic_longitudes(cor, 'lon')reg = gvutil.xr_add_cyclic_longitudes(reg, 'lon')# 添加等距柱面投影,中心经度为210°ax = fig.add_subplot(grid_space,projection=ccrs.PlateCarree(central_longitude=210))# 添加海岸线ax.coastlines(linewidth=0.5, alpha=0.6)# 设置坐标范围gvutil.set_axes_limits_and_ticks(ax,xlim=(-180, 180),ylim=(-90, 90),xticks=np.arange(-180, 180, 60),yticks=np.arange(-90, 90, 30))# Use geocat.viz.util convenience function to add minor and major tick linesgvutil.add_major_minor_ticks(ax, labelsize=10)# Use geocat.viz.util convenience function to make latitude, longitude tick labelsgvutil.add_lat_lon_ticklabels(ax)#设置colorbarnewcmp = cmaps.NCV_blu_redindex = [5, 20,  35, 50, 65, 85, 95, 110, 125,  0, 0, 135, 150,  165, 180, 200, 210, 220, 235, 250 ]color_list = [newcmp[i].colors for i in index]# 设置colorbar中间颜色为白色color_list[9]=[ 1., 1., 1.]color_list[10]=[ 1., 1., 1.]# 定义填色图的参数kwargs = dict(vmin = -1.0,vmax = 1.0,levels = 21,colors=color_list,add_colorbar=False,  # allow for colorbar specification latertransform=ccrs.PlateCarree(),  # ds projection)# 相关系数的填色图fillplot = cor.plot.contourf(ax=ax,  **kwargs)# 添加陆地、地形ax.add_feature(cfeature.LAND, facecolor='lightgray', zorder=1)ax.add_feature(cfeature.COASTLINE, edgecolor='gray', linewidth=0.5, zorder=1)# 设置等值线参数# Specify contour levels excluding 0delc=0.2levels = np.arange(-3, 0, delc)levels = np.append(levels, np.arange(delc, 3, delc))# 回归系数为等值线rad = reg.plot.contour(ax=ax,colors='black',alpha=0.8,linewidths=1.0,add_labels=False,levels=levels,transform=ccrs.PlateCarree())pe = [PathEffects.withStroke(linewidth=2.0, foreground="w")]plt.setp(rad.collections, path_effects=pe)# 设置标题、及其位置、大小gvutil.set_titles_and_labels(ax,lefttitle=title,lefttitlefontsize=16,righttitle='',righttitlefontsize=16,xlabel="",ylabel="")return ax, fillplot# Show the plotfig = plt.figure(figsize=(10, 12),dpi=200)
grid = fig.add_gridspec(ncols=2, nrows=3)
#grid = fig.add_gridspec(ncols=2, nrows=3, hspace=-0.20)ax1, fill1 = makefig(corP18,regP18,'18-month lag', grid[0,0])
ax2, fill2 = makefig(corP12,regP12,'12-month lag', grid[1,0])
ax3, fill3 = makefig(corP6,regP6,'6-month lag', grid[2,0])
ax4, fill4 = makefig(cor0,reg0,'Simultaneous', grid[0,1])
ax5, fill5 = makefig(corM6,regM6,'6-month lead', grid[1,1])
ax6, fill6 = makefig(corM12,regM12,'12-month lead', grid[2,1])fig.colorbar(fill6,ax=[ax1, ax2, ax3, ax4, ax5, ax6],drawedges=True,orientation='horizontal',shrink=0.5,pad=0.05,extendfrac='auto',extendrect=True)fig.suptitle('SST correlation & regression with Nino3.4', fontsize=18, y=0.9)plt.draw()

sst_lead_lag_corr_reg-smooth

https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni

Trenberth, Kevin & National Center for Atmospheric Research Staff (Eds). Last modified 2024-03-20 "The Climate Data Guide: Nino SST Indices (Nino 1+2, 3, 3.4, 4; ONI and TNI).”

Trenberth, K.E. and Stepaniak, D.P. (2001) Indices of El Nino Evolution. Journal of Climate, 14, 1697-1701.
https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2

https://climate.usu.edu/people/yoshi/pyclm101/index.html

本文由mdnice多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/303949.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【JavaWeb】Day39.MySQL概述——数据库设计-DQL(二)

数据库设计-DQL 聚合函数 聚合函数查询就是纵向查询&#xff0c;它是对一列的值进行计算&#xff0c;然后返回一个结果值。&#xff08;将一列数据作为一个整体&#xff0c;进行纵向计算&#xff09; 语法&#xff1a; select 聚合函数(字段列表) from 表名 ; 注意 : 聚合…

C++的stack和queue类(一):适配器模式、双端队列与优先级队列

目录 基本概念 stack的使用 queue的使用 适配器模式 stack.h test.cpp 双端队列-deque 仿函数 优先队列 priority_queue的使用 queue.h文件 stack.h文件 test.cpp文件 日期类的比较 商品的比较 结论 基本概念 1、stack和queue不是容器而是容器适配器&…

unable to find a medium containing a live file system解决办法!

背景&#xff1a; 用Ventoy制作U盘系统安装盘&#xff0c;只需要把ISO镜像拷进去就可以&#xff0c;可以放多少个镜像取决于U盘的大小&#xff0c;无需重复制作。Ventoy 将U盘的第一个分区默认格式化为exFAT文件系统来存放ISO文件。 但是&#xff0c;今天鲲鹏920平台安装银河…

实景三维技术在推进城市全域数字化转型的作用

4月2日&#xff0c;国家数据局发布《深化智慧城市发展推进城市全域数字化转型的指导意见&#xff08;征求意见稿&#xff09;》&#xff08;下称&#xff1a;《指导意见》&#xff09;&#xff0c;向社会公开征求意见。 《指导意见》作为推进城市数字化转型的重要文件&#xf…

蓝桥杯 交通信号 2022研究生组

问题&#xff1a; Dijstra算法变形题&#xff0c;有向边分正行和逆行方向&#xff0c;注意逆行的绿灯时间是正行的红灯时间。 这题的关键是理清从当前节点出发&#xff0c;到下一个节点是哪一时刻&#xff0c;理清这一点后&#xff0c;再跑Dijstra算法求最短路。 假设curr_t时…

美团一面,面试官让介绍AQS原理并手写一个同步器,直接凉了

写在开头 今天在牛客上看到了一个帖子&#xff0c;一个网友吐槽美团一面上来就让手撕同步器&#xff0c;没整出来&#xff0c;结果面试直接凉凉。 就此联想到一周前写的一篇关于AQS知识点解析的博文&#xff0c;当时也曾埋下伏笔说后面会根据AQS的原理实现一个自定义的同步器…

C++笔记(函数重载)

目录 引入&#xff1a; 定义&#xff1a; 易错案例&#xff1a; 引入&#xff1a; 对于实现相似功能的函数&#xff0c;在命名时&#xff0c;我们常会出现命名重复的问题。对于C语言&#xff0c;编译器遇到这种命名重复的情况&#xff0c;会进行报错。而我们的C为了更方便程…

前端开发中地图定位与距离计算的应用实践

前端开发中地图定位与距离计算的应用实践 在前端开发中&#xff0c;地图功能的应用日益广泛&#xff0c;无论是用户位置的定位、目标距离的计算&#xff0c;还是地址的解析与展示&#xff0c;地图都发挥着不可替代的作用。本文将重点介绍前端开发中实现地图定位、距离计算以及…

Docker部署前后端分离项目

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a; 开发环境篇 ✨特色专栏&#xff1a; M…

Unity类银河恶魔城学习记录12-7-2 p129 Craft UI - part 2源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释&#xff0c;可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili UI_CraftWindow.cs using UnityEngine.UI; using TMPro; using UnityEngin…

CentOS7.9创建本地yum源操作步骤报错解决方法

1.基础信息 CentOS7.9-mini最小化安装的系统&#xff0c;在离线安装rpm时候需要大量依赖&#xff0c;需要花费大量时间去查找依赖包。受于环境限制无法接入互联网使用公开yum源&#xff0c;于是便有了搭建本机yum源的想法&#xff0c;在网上下载CentOS7.9标准版“CentOS-7-x86_…

windows 系统下 mysql 数据库的下载与安装(包括升级安装)

windows 系统下 mysql 数据库的下载与安装&#xff08;包括升级安装&#xff09; 一、mysql 介绍&#xff1a; MySQL 是一个关系型数据库管理系统&#xff0c;由瑞典 MySQL AB 公司开发&#xff0c;属于 Oracle 旗下产品。 MySQL 是最流行的关系型数据库管理系统之一&#xf…

pyqt5 QScrollArea组件

本示例中&#xff0c;演示了QScrollArea的使用&#xff0c;以及QScrollBar的样式设定&#xff0c;在代码中使用setStyleSheet设置样式&#xff0c;记得要优先设置scrollArea&#xff0c;再设置窗口的样式&#xff0c;不然QScrollBar的样式会不起作用&#xff0c;使用QSS设置没有…

hadoop103: Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password).

分析&#xff1a; 在启动hadoop服务的时候&#xff0c;遇到了这个问题&#xff1a; hadoop103: Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password). 这个一看就是&#xff0c;密钥问题 于是ssh 主机名就行测试 需要输入密码&#xff0c;就说明这里有问…

A Note on LoRA

A Note on LoRA 摘要Additional InsightsPractical ImprovementsLooking Ahead 摘要 LoRA已成为一种首选的方法&#xff0c;用以高效地适应大型语言模型&#xff08;LLM&#xff09;&#xff0c;其简便性和有效性令人瞩目。本文档扩展了原始LoRA论文&#xff0c;提供了最初未讨…

MySQL进阶之(七)EXPLAIN 详解

七、EXPLAIN 详解 7.1 查询性能那些事7.1.1 查看系统性能参数7.1.2 统计 SQL 的查询成本7.1.3 定位执行慢的 SQL&#xff1a;慢查询日志01、开启慢查询日志参数02、关闭慢查询日志03、删除慢查询日志 7.1.4 查看 SQL 执行成本&#xff1a;SHOW PROFILE 7.2 EXPLAIN 语句输出中各…

java程序 .exe启动nginx防止重复启动,已解决

java代码生成好的.exe启动nginx服务程序 根据nginx占用端口来解决nginx服务重复启动问题&#xff08;下面代码了解代码逻辑后根据自己的业务需求修改即可&#xff09; 代码&#xff1a; package org.example;import javax.swing.*; import java.awt.*; import java.io.*; …

蓝桥杯——16

学习视频&#xff1a;17-深搜的剪枝策略视频讲解_哔哩哔哩_bilibili #include<iostream> #include<cstring> using namespace std; int n, m; string maze[110]; bool vis[110][110]; int dir[4][2] { {0,1},{0,-1},{1,0},{-1,0} }; int ans 100000; bool in(in…

利用Python ARM网关仓储物流AGV小车控制器

在现代智慧物流体系中&#xff0c;高效的信息管理系统是物流中心实现精准跟踪货物、科学管理库存及优化配送路线的关键环节。通过采用ARM架构的工控机或网关&#xff0c;并结合Python的二次开发能力&#xff0c;可以有效集成并强化物流管理系统的数据处理与通信功能&#xff0c…

基于springboot+vue实现的的成人教育教务系统

作者主页&#xff1a;Java码库 主营内容&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app等设计与开发。 收藏点赞不迷路 关注作者有好处 文末获取源码 技术选型 【后端】&#xff1a;Java 【框架】&#xff1a;spring…