【机器学习算法】决策树和随机森林在计算机视觉中的应用

前言

决策树和随机森林在计算机视觉中有着广泛的应用。决策树作为一种简单而强大的分类模型,可以用于图像分类、目标检测、特征提取等任务。它能够根据图像的特征逐层进行判断和分类,从而实现对图像数据的智能分析和理解。随机森林作为一种集成学习方法,利用多棵决策树的集成来提高分类性能,具有良好的泛化能力和鲁棒性。在计算机视觉领域,随机森林常用于图像分类、目标检测、图像分割等任务,通过同时训练多个决策树,并结合其预测结果来实现对图像数据的分析和处理。决策树和随机森林的应用使得计算机能够更准确、更高效地识别图像中的对象、场景和特征,从而推动了计算机视觉技术的发展和应用。

文章目录

  • 前言
  • 决策树(Decision Trees)
    • 决策树的一般步骤
    • 基本公式
    • 代码实现
  • 随机森林(Random Forests)
    • 随机森林的主要步骤
    • 基本公式
    • 代码实现
  • 结语

决策树(Decision Trees)

决策树是一种基于树形结构的分类(或回归)模型,它通过对数据集中的特征进行递归地分割,以构建一个树形结构,从而实现对数据的分类或预测。

决策树的一般步骤

  1. 特征选择:根据某种准则(如信息增益、基尼不纯度等),选择最佳的特征来进行数据集的划分
  2. 节点分裂:将数据集根据选定的特征进行分割,生成新的节点。
  3. 递归处理:对每个新生成的节点重复上述过程,直到达到停止条件,如节点达到最大深度、样本数低于阈值等。
  4. 叶节点标记:当达到停止条件时,将叶节点标记为最终的类别(或回归值)。

决策树的优点包括易于理解和解释、能够处理数值型和类别型数据、对缺失值不敏感等。然而,单独的决策树容易过拟合,泛化能力较弱,为了解决这个问题,可以使用集成学习方法,如随机森林。
在这里插入图片描述

基本公式

决策树的基本公式用于计算特征选择的准则,例如信息增益(Information Gain)或基尼不纯度(Gini Impurity)。以信息增益为例,其计算公式为:
I G ( D , f ) = I ( D ) − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ I ( D v ) IG(D, f) = I(D) - \sum_{v=1}^{V} \frac{|D_v|}{|D|} I(D_v) IG(D,f)=I(D)v=1VDDvI(Dv)

其中:

  • IG(D, f) 是特征f的信息增益;
  • I(D) 是数据集 D 的初始信息熵;
  • V 是特征 f 的可能取值个数;
  • D_v 是数据集 D 中特征 f 取值为 v 的子集;
  • |D| 和 |D_v| 分别是数据集 D 和子集 D_v 的样本数量;
  • I(D) 和 I(D_v) 分别是数据集 D 和子集 D_v 的信息熵,计算方式为 I ( D ) = − ∑ i = 1 C p i log ⁡ 2 ( p i ) I(D) = -\sum_{i=1}^{C} p_i \log_2(p_i) I(D)=i=1Cpilog2(pi),其中 p_i 是数据集中类别 i 的样本比例。

代码实现

以下是使用Python和scikit-learn库构建决策树模型的示例代码:

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建决策树分类器
dt_classifier = DecisionTreeClassifier()# 训练模型
dt_classifier.fit(X_train, y_train)# 预测并计算准确率
y_pred = dt_classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("决策树模型的准确率:", accuracy)

随机森林(Random Forests)

随机森林是一种集成学习方法,通过同时训练多个决策树来提高分类(或回归)性能。随机森林的基本思想是:通过随机选择特征子集和样本子集,构建多个决策树,并通过投票(分类任务)或平均(回归任务)来得到最终的预测结果。

随机森林的主要步骤

  1. 随机选择特征子集:对于每棵决策树的训练过程中,随机选择特征子集,以保证每棵树的差异性。
  2. 随机选择样本子集:对于每棵决策树的训练过程中,随机选择样本子集,以保证每棵树的差异性。
  3. 独立训练:利用选定的特征子集和样本子集独立地训练每棵决策树。
  4. 投票(或平均):对于分类任务,通过投票来确定最终的类别;对于回归任务,通过平均来确定最终的预测值。

随机森林相对于单个决策树具有更好的泛化能力和抗过拟合能力,因为它通过集成多个模型来减少方差。此外,由于随机森林的并行性,它的训练过程可以很好地进行并行化处理,适用于大规模数据集。
在这里插入图片描述

基本公式

随机森林的核心思想是集成多个决策树,通过投票(分类任务)或平均(回归任务)来得到最终的预测结果。对于分类任务,假设我们有
T 棵树,每棵树的预测结果为 y ^ i \hat{y}_i y^i,则随机森林的预测结果为:

y ^ RF = argmax c ∑ i = 1 T I ( y ^ i = c ) \hat{y}_{\text{RF}} = \text{argmax}_c \sum_{i=1}^{T} I(\hat{y}_i = c) y^RF=argmaxci=1TI(y^i=c)

其中:

  • y ^ RF \hat{y}_{\text{RF}} y^RF 是随机森林的预测结果;

  • y ^ i \hat{y}_i y^i 是第 i 棵树的预测结果;

  • T 是随机森林中树的数量;

  • c 是类别标签;

  • I( ) 是指示函数,表示当 y ^ i \hat{y}_i y^i 等于类别 c 时返回1,否则返回0。

代码实现

以下是使用Python和scikit-learn库构建随机森林模型的示例代码:

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score# 创建随机森林分类器
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)# 训练模型
rf_classifier.fit(X_train, y_train)# 预测并计算准确率
y_pred_rf = rf_classifier.predict(X_test)
accuracy_rf = accuracy_score(y_test, y_pred_rf)
print("随机森林模型的准确率:", accuracy_rf)

结语

决策树和随机森林作为机器学习中的经典算法,在计算机视觉领域发挥着重要作用。它们能够从图像数据中学习模式和特征,并用于图像分类、目标检测、特征提取等任务。决策树通过递归地进行特征选择和节点分裂,构建起对图像数据的分类模型;而随机森林则通过集成多个决策树,利用投票或平均的方式获得更加稳健和准确的分类结果。这些算法的应用使得计算机能够更加智能地处理和理解图像数据,为图像识别、智能监控、自动驾驶等领域的发展提供了强大支持。在未来,随着计算机视觉技术的不断发展和深入,决策树和随机森林这样的经典算法将继续发挥着重要作用,为实现更智能、更高效的图像分析和处理提供技术支持。

下期我们讲解朴素贝叶斯和k近邻算法在计算机视觉中的应用。看到这里,给个三连吧!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/304732.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何在Ubuntu系统使用docker部署DbGate容器并发布至公网可访问

文章目录 1. 安装Docker2. 使用Docker拉取DbGate镜像3. 创建并启动DbGate容器4. 本地连接测试5. 公网远程访问本地DbGate容器5.1 内网穿透工具安装5.2 创建远程连接公网地址5.3 使用固定公网地址远程访问 本文主要介绍如何在Linux Ubuntu系统中使用Docker部署DbGate数据库管理工…

算法——链表(1)

T04BF 👋专栏: 算法|JAVA|MySQL|C语言 🫵 小比特 大梦想 此篇文章与大家分享链表专题的第一部分 如果有不足的或者错误的请您指出! 1.链表常用技巧总结 1.1引入虚拟头结点 在力扣上,基本提供的链表题目都是"无头的",但是针对无头链表,我们最…

使用Android完成案例教学

目录 题目:完成在Android平台下2个玩家分别利用2个手机连接在同一局域网下通过滑动摇杆分别使红飞机和黄飞机移动的开发。(全代码解析) 题目:完成在Android平台下2个玩家分别利用2个手机连接在同一局域网下通过滑动摇杆分别使红飞…

c++之旅第九弹——模版

大家好啊,这里是c之旅第九弹,跟随我的步伐来开始这一篇的学习吧! 如果有知识性错误,欢迎各位指正!!一起加油!! 创作不易,希望大家多多支持哦! 一.模版的概念…

ORB-SLAM3整体流程详解

0. 简介 在之前,作者曾经转过一篇《一文详解ORB-SLAM3》的文章。那篇文章中提到了ORB-SLAM3是一个支持视觉、视觉加惯导、混合地图的SLAM系统,可以在单目,双目和RGB-D相机上利用针孔或者鱼眼模型运行。与ORB-SLAM2相比,ORB-SLAM3…

qiankun框架中基于actions机制实现主应用与子应用间的双向通信

文章目录 一、原理1、setGlobalState:2、onGlobalStateChange:3、offGlobalStateChange:4、图解 二、示例主应用1、在父应用中使用initGlobalState设置全局状态actions并导出供其他组件使用。2、在main.js中引入actions实例并在注册子应用时通…

Ubuntu20.04安装ROS过程记录以及常见报错处理

官网安装步骤如下: http://wiki.ros.org/cn/noetic/Installation/Ubuntu#A.2BXwBZy1uJiMU- 第一个:添加ROS软件源 sudo sh -c echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-la…

中位数和众数-第12届蓝桥杯选拔赛Python真题精选

[导读]:超平老师的Scratch蓝桥杯真题解读系列在推出之后,受到了广大老师和家长的好评,非常感谢各位的认可和厚爱。作为回馈,超平老师计划推出《Python蓝桥杯真题解析100讲》,这是解读系列的第49讲。 中位数和众数&…

逆向入门:为CTF国赛而战day05day06

用的汉化版的 昨天做了一道题目,然后下了那个apkide改之理,就没了 今天再来一题。 我发现:ascii表要好好学。这里#号是35就被写到题目里去了。 CTF reverse 不一样的flag_ctf reverse flag.bin-CSDN博客

linux下如何查看防火墙状态

systemctl status firewalld (看防火墙进程) cat /etc/selinux/config (看是否启用linux安全模式)

最新版两款不同版SEO超级外链工具PHP源码

可根据个人感觉喜好自行任意选择不同版本使用(版V1或版V2) 请将zip文件全部解压缩即可访问! 源码全部开源,支持上传二级目录访问 #已更新增加大量高质量外链(若需要增加修改其他外链请打开txt文件) #修…

设计模式学习笔记 - 设计模式与范式 -行为型:9.迭代器模式(上):相比直接遍历集合数据,使用迭代器模式有哪些优势?

概述 上篇文章,我们学习了状态模式。状态模式是状态机的一种实现方式。它通过将事件触发的状态转移和动作执行,拆分到不同的状态类中,以此来避免状态机类中的分支判断逻辑,应对状态机类代码的复杂性。 本章,学习另外…

day02 VS Code开发单片机

VS Code开发单片机 1.1 安装 MinGW-w64 1)MinGW-w64介绍 VS Code 用于编辑 C 代码,我们还需要 C 编译器来运行 C 代码,所以安装 VS Code之前我们需要先安装 C 编译器。这里我们使用 MinGW-w64(Minimalist GNU for Windows 64-bit)。 MinGW-w64 是一个用于Windows操作系…

B站自研新一代视频编码器 BILIAV1

1. AV1 视频编码标准介绍 AV1是开放媒体联盟(AOM, Alliance for Open Media)开发的第一代开放,免版税的视频编码标准。AV1于 2018 年 3 月定稿,相同画质下,码率比 H.265/HEVC 低 20% 左右。经过 Google、N…

【打印SQL执行日志】⭐️Mybatis-Plus通过配置在控制台打印执行日志

目录 前言 一、Mybatis-Plus 开启日志的方式 二、测试 三、日志分析 章末 前言 小伙伴们大家好,相信大家平时在处理问题时都有各自的方式,最常用以及最好用的感觉还是断点调试,但是涉及到操作数据库的执行时,默认的话在控制台…

idea中输入法被锁定如何清除

今天遇到一个问题?idea中输入法被锁定了,无论怎么切换输入法,切换中英文,在idea中输出的均为英文内容,该如何解决呢?(idea官网:JetBrains: 软件开发者和团队的必备工具) …

Java常用API_正则表达式_分组——捕获分组与非捕获分组介绍与练习

在正则表达式中,从左到右第一个左括号确定为第一组,继续往右看再有左括号它表示的组数就加一。我们可以在正则表达式中使用 \\组数 的方法表示第几组,如\\1表示第一组的内容。 1.捕获分组 捕获分组就是把这一组的数据捕获出来,后…

SpringBoot和Vue2项目配置https协议

1、SpringBoot项目 ① 去你自己的云申请并下载好相关文件,SpringBoot下载的是Tomcat(默认),Vue2下载的是Nginx ② 将下载的压缩包里面的.pfx后缀文件拷贝到项目的resources目录下 ③ 编辑配置文件 (主要是框里面的内…

基于wsl的Ubuntu20.04上安装桌面环境

在子系统Ubuntu20.04上安装桌面环境 1. 更换软件源 由于Ubuntu默认的软件源在国外,有时候后可能会造成下载软件卡顿,这里我们更换为国内的阿里云源,其他国内源亦可。 双击打开Ubuntu20.04 LTS图标,在命令行中输入 # 备份原来的软…

创意解决方案:如何将作品集视频集中于一个二维码或链接中?

引言:随着面试环节的进一步数字化,展示自己的作品集成为了求职过程中的重要一环。但除了使用传统的方式,如百度网盘或直接发送多个视频链接,有没有更便捷的方法将作品集的多个视频放在一个链接中呢? 本文将介绍一种创意解决方案…