从文字到思维:呆马GPT在人工智能领域的创新之旅

引言

生成式预训练变换器(Generative Pre-trained Transformer,简称GPT)领域是人工智能技术中的一大革新。自OpenAI推出第一代GPT以来,该技术经历了多代发展,不断提升模型的规模、复杂度和智能化程度。GPT模型通过在大规模数据集上进行预训练,学习语言的统计规律和世界知识,然后在特定任务上进行微调,以适应不同的应用需求。GPT领域的发展推动了自然语言处理(NLP)技术的进步,广泛应用于聊天机器人、文本摘要、自动写作、语言翻译、情感分析等多个领域。它不仅改变了人们与机器交互的方式,也为数据分析、内容创作、教育辅导等行业带来了革命性的变化。

1.市场背景

1.1 什么是 GPT

GPT-1、GPT-2、GPT-3是指Open AI开发的大型预训练语言模型,全称是Generative Pre-Trained Transformer(生成式预训练Transformer模型)。这是一种基于互联网、可用数据训练的文本生成深度学习模型。它与专注于下围棋或机器翻译等某一个具体任务的“小模型”不同,GPT这种AI大模型更像人类的大脑,兼具“大规模”和“预训练”两种属性,能在海量通用数据上进行预先训练,能大幅提升AI的泛化性、通用性、实用性。

目前划时代的有三个版本:GPT-1、GPT-2 和 GPT-3。每一个版本都代表了人工智能和自然语言处理领域的重大突破。下面,我们将详细介绍每个版本的发展历程和特点。

GPT-1:

GPT-1是Open AI团队在2018年发布的第一个版本。它引入了transformer结构,并采用预训练后fine-tuning的方式进行训练,它的模型规模相对较小,有1.17亿(117M)的模型参数。尽管GPT-1只能处理较短的文本,比如几段文字或一篇短文,但已经能够象人类一样产生看似有意义的语句,甚至能对一些问题进行简单的回答。GPT-1启发了大家对于语言模型的新理解,引发了在自然语言处理任务上,预训练模型的热潮。

GPT-2:

在2019年,Open AI发布了GPT-2。它的模型参数已经增加到了15亿(1.5B),整体来说,GPT-2的能力比GPT-1强大得多。它可以生成更长的文本内容,文本质量也大大提高,有的甚至能让人误以为是人类写的。不仅如此,你甚至可以和GPT-2进行类似聊天的交流,它能理解你的问题,并给出看似合理的答案。

真正让人惊讶的是,GPT-2在一些特定任务上,如阅读理解、翻译,甚至能超越当时的最先进方法。然而,由于GPT-2强大的生成能力,同时也让人担心它可能被用来生成假新闻或者网络钓鱼邮件,因此Open AI在一开始并未公开所有版本的模型,这让人对AI的伦理问题有了新的认识。

GPT-3:

至2020年,Open AI发布了GPT-3。这次他们把模型参数增加到了惊人的1750亿(175B)。GPT-3有了前所未有的强大能力,可以生成非常高质量和连贯性强的长文本。比如,它能根据一段代码的描述,生成对应的Python代码;可以写出极具说服力的商业报告,等等。

GPT-3在许多任务中仅仅通过单步的前向传播就能表现得很好,而不用像之前的版本那样需要fine-tuning。也就是说,GPT-3在新任务上的适用性更强。而Open AI以API的形式对外提供GPT-3的服务,使得许多开发者能方便地利用GPT-3,开发各种各样的应用。

总结来说,GPT从1到3的发展,不仅仅是模型参数的增大,更是我们对自然语言理解,对人工智能应用的理解的深入。每一个版本,都反映了人工智能技术的进步,也反映了社会对人工智能的期待和恐惧。未来,我们期待看到更多突破,不仅在技术上,也在人工智能的应用和伦理问题的讨论上。

GPT具有很多实用的应用场景,其中离我们最近的就是文章生成。比如,你可以向GPT模型输入一个概念、一个问题或者一个标题,它就可以生成一篇完整的文章。除此之外,GPT还可以完成聊天机器人、自动邮件回复、新闻撰写、代码编写等很多任务,并且由于其方向迁移(transfer learning)的特性,这种模型在训练过程中会学习大量通用知识,可以被多次使用,加强其他任务的性能。

另一大应用领域是问答系统。你可以输入一个问题,它能够给你生成一个答案,甚至能够进行对话。这不仅可以用在一些常见问题的自动应答,更可以用于教育培训、线上咨询等领域。

总结起来,GPT模型既可以用在文本关联生成的应用,也可以用在自然语言理解的任务,它能大大提高我们处理语言的效率和质量。

1.2传统 GPT有哪些局限性?

GPT是利用公开语言预训练的模型,训练数据截至到2021年9月,数据非最新且基本为公共知识(网站、自媒体、维基百科等),缺少私有知识(获取成本高、授权难),这也导致GPT可以很好地扮演“十万个为什么”的角色,但整体擅长常识和通识层面的回答,对于行业细分知识、企业内部知识则缺乏深入性和准确性。

GPT是生成式AI,背后的transformer算法本质上是单词接龙游戏,在海量数据库的基础上,GPT要保持生成能力和创造性,就必然会影响其内在准确性,导致他在遇到他不知道的问题、欠缺的知识的情形下,依然会一本正经的胡说八道、不懂装懂。

1.3 针对传统GPT局限性的解决方案

GPT大模型+私有知识库的定制AI助手

大量的人类有价值的知识,其实并不是公共知识,而是私有知识库,具体表现为个体经验、个体知识、企业内部知识、行业内部知识等。这些知识散落形式存在于个体、企业、行业内部,GPT大模型+私有知识库的定制AI助手,就是要解决好这些知识的搜集、清洗工作,建立私有知识库,把知识向量化,做二次开发训练,再利用GPT大模型的语言理解能力、逻辑推理能力、文本生成能力,真正把私有知识库使用起来,传承下去。

拥有了GPT大模型+私有知识库的定制AI助手,可以严格限定回答范围,确保AI基于私有知识库来回答,一方面保证了回答的准确性,另一方面,基于私有知识库的回答,也不再只是“常识、通识”层面的“正确的废话”,可以把“私有知识库”的真正价值发挥出来。

私有知识库都有哪些常见类型?

基于个体博客、文章、音视频资料、聊天记录等知识的数字分身

基于校园百科类知识的问答助手

基于教材、专著、笔记、论文、期刊等学术知识的AI助教

基于专家培训资料、法律法条、财税知识等行业知识的AI顾问

基于企业产品、技术、运营等内部知识的AI数字员工

1.4为什么需要AI私有知识库?

  • 智能化管理:AI私有知识库利用人工智能技术,可以实现知识管理的自动化和智能化。例如,自动分类、自动标签、智能搜索等,提高了知识管理的效率和准确性。
  • 个性化服务:AI私有知识库可以基于企业业务需求和员工个性化需求,提供定制化的服务和解决方案。例如,根据员工的角色和职位,推送相关的知识和信息,提供更有针对性的支持。
  • 高效检索:AI私有知识库利用自然语言处理和机器学习技术,可以实现智能检索和推荐。员工可以通过关键词、标签、分类等方式快速找到所需的知识和信息,提高了检索效率和准确性。
  • 提高工作效率:通过建立私有知识库,企业可以将分散在各个部门和员工手中的信息和知识集中起来,形成一个系统化的知识管理体系。这使得员工可以更方便地查找和使用这些知识和信息,提高了工作效率。
  • 数据安全:AI私有知识库的数据存储在本地,不与外部网络连接,因此可以确保数据的安全性和隐私性。同时,通过设置权限和访问控制,可以确保只有授权人员能够访问相关知识和信息。
  • 促进知识创新:AI私有知识库不仅是一个存储知识的平台,也是一个促进知识创新和交流的平台。通过提供互动和协作的功能,可以激发员工的创新思维和合作精神,促进知识的共享和创新。
  • 降低成本:AI私有知识库的建设和维护成本相对较低,尤其是对于大型企业来说,可以节省大量的成本。同时,通过提高知识管理的效率和准确性,也可以降低企业的运营成本。

2.产品介绍

2.1产品描述

呆马AI私有大模型呆马GPT所涉及的行业属于AI生成内容行业(Artificial Intelligence Generated Content,AIGC)。这个行业整合了人工智能、大数据、云计算、5G等多个技术领域,可以在创意、表现力、迭代、传播、个性化等方面发挥技术的优势。

在2021年之前,AIGC主要生成文字内容,但是新一代的模型已经可以处理文字、语音、代码、图像、视频、机器人动作等多种格式的内容。随着深度学习模型的不断完善、开源模式的推动以及大型模型商业化的可能,AIGC 行业未来发展前景非常广阔。

2.2 产品概念

呆马AI私有大模型基本概念:

是由呆马科技开发的一种 AI 语言模型,它可以根据给定的输入生成类似于人类的文本。该模型经过在大量文本数据集上的训练,具备生成问题回答、长文本总结、故事创作等能力。通常情况下,它被用于对话式 AI 应用中,以模拟与用户进行类人对话。呆马AI私有大模型是一种使用大量文本数据进行训练的深度学习模型,旨在实现计算机对人类语言的自动理解和生成。该模型的主要作用在于提高计算机对人类语言的处理能力,从而使其可以更好地与人类进行交互,并在自然语言处理领域中发挥重要作用。目前,该模型也扮演了核心组件的角色,通过对接不同行业的知识库,对于不同客户需求做到高度的定制化,同时支持智能对话和自然语言理解等关键功能。

2.3产品逻辑图解

我们会在用户输入的问题中提取关键信息,并利用该信息的向量嵌入设计算法,以提高匹配准确性。所以即使用户的问题是模糊不清的时候,这种方法也会产生次优的结果。并在此基础上,做对应私有知识库的知识引用,运用私有知识+大模型能力来回答,解决回答精准性的问题,最大程度发挥私有知识库的价值。

3.产品展示

3.1演示案例

基于法律法条的定制AI“法律顾问”

GPT大模型的训练数据是截至2021年9月的,且中文语料相对欠缺,导致GPT回答日常法律问题时候的弊端比较突出:

(1)没有2021年9月以后颁布的最新法条数据;

(2)国内法律法规的更新迭代比较快,GPT的很多法条已经被新法替代,但其回答依然基于旧法条;

(3)没有专门针对国内法律法规做数据清洗,导致大模型搜集了大量过时的法律法规、新闻媒体报道不准确的法律法规和案例、古代的司法知识。

有鉴于此,我们梳理了国内现行生效执行的全部法律法规和相应条文,建立了专门的法律私有知识库,做了深入的二次开发训练,确保其基于现行生效的法律法规,依据严谨的法律推理来回答问题,呆马的定制AI“法律顾问”就可以以专业、严谨的法律专家的角色,来为我们提供日常法律咨询服务了。

【对比分析】可以明显看出,呆马定制AI“法律顾问”,相较于普通版本的“百事通”,在回答具体法律问题时,可以援引清晰的法律条文,来做回答,除了给出明确的法律依据和结论“当前不需要缴纳营业税”以外,还举出了增值税小规模纳税人、增值税一般纳税人、合伙企业纳税、关税等中小企业主可能会面临的法律税种,更加全面、严谨、规范,对用户的参考价值会更大。

呆马GPT作为一种基于海量数据和大规模预训练而形成的具有海量参数的大模型媒介正在全球引发一场新技术的创新扩散,大模型媒介以其强大的对人类自然语言习惯常识性、结构性、对话性文本的理解和生成能力,正在引发一场智能传播革命,从而大大拓展人类信息传播的广度和深度,而且还将深刻地影响社会的形态和结构,使其变成一种不可或缺的“社会行动者”和决定性的“社会权力”。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/304982.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】vim 编辑器

Linux 系统自带了 gedit 和 vi 编辑器,gedit 是图形化界面的操作,而 vi 由比较难用,所以建议安装 vim 编辑器,vim 是从 vi 发展出来的一个文本编辑器,相当于增强版的 vi ,其代码补完、编译及错误跳转等功能…

从路由器syslog日志监控路由器流量

路由器是关键的网络基础设施组件,需要随时监控,定期监控路由器可以帮助管理员确保路由器通信正常。日常监控还可以清楚地显出通过网络的流量,通过分析路由器流量,安全管理员可及早识别可能发生的网络事件,从而避免停机…

负荆请罪将相和之后的廉颇蔺相如,下场如何?

“将相和”的故事相信许多人都听说过, 这个故事来自于司马迁的《史记》,并被许多版本的语文教科书所收录,而“完璧归赵”“负荆请罪”等成语也都是出自这个故事。但是这个故事并没有讲“将相和”之后的内容,实际上,蔺相…

C语言面试题之合法二叉搜索树

合法二叉搜索树 实例要求 实现一个函数,检查一棵二叉树是否为二叉搜索树; 示例 1: 输入:2/ \1 3 输出: true 示例 2: 输入:5/ \1 4/ \3 6 输出: false 解释: 输入为: [5,1,4,null,null,3,6]。根节点的值为 5 ,但是其右子节点值为 4 …

VS2022使用属性表快速设置OpenCV工程属性

1.创建C控制台应用 2.配置工程 3.打开工程后,为工程添加属性表 打开属性管理器窗口,选择Debug|x64 然后右击选择添加新的项目属性表 并命名为opencv490_debug_x64 点击添加 Debug版本属性表添加成功 使用相同方法添加Release版本属性表 双击debug版本属性表并添加包含目录 添…

90天玩转Python—03—基础知识篇:Python和PyCharm(语言特点、学习方法、工具安装)

90天玩转Python系列文章目录 90天玩转Python—01—基础知识篇:C站最全Python标准库总结 90天玩转Python--02--基础知识篇:初识Python与PyCharm 90天玩转Python—03—基础知识篇:Python和PyCharm(语言特点、学习方法、工具安装) 90天玩转Python—04—基础知识篇:Pytho…

Github第一Star数的国产免费开源防火墙--雷池社区版初步体验

前言 近期准备搭建一个博客网站,用来存储工作室同学们的学习笔记。服务器准备直接放在公网上,方便大家随时随地的上传和浏览,为了防止网站被人日穿成为肉鸡,一些防御措施还是要部署的。 首先明确自己的需求: 零成本…

【Python】控制台进度条

在Python开发中,有时需要向用户展示一个任务的进度,以提供更好的交互体验。下面我将展示如何使用Python来创建一个简单的控制台进度条。 效果: 代码: import time import sys def print_progress_bar(completed, total, length…

Windows搭建Jellyfin影音服务结合内网穿透实现公网访问本地视频文件

文章目录 1. 前言2. Jellyfin服务网站搭建2.1. Jellyfin下载和安装2.2. Jellyfin网页测试 3.本地网页发布3.1 cpolar的安装和注册3.2 Cpolar云端设置3.3 Cpolar本地设置 4.公网访问测试5. 结语 1. 前言 随着移动智能设备的普及,各种各样的使用需求也被开发出来&…

【Web】NSSRound#1-20 Basic 刷题记录(全)

目录 [NSSRound#1 Basic]basic_check [NSSRound#1 Basic]sql_by_sql [NSSCTF 2nd]php签到 [NSSCTF 2nd]MyBox [NSSCTF 2nd]MyBox(revenge) [NSSCTF 2nd]MyHurricane [NSSCTF 2nd]MyJs [NSSRound#3 Team]This1sMysql [NSSRound#3 Team]path_by_path [NSSRound#…

二叉树应用——最优二叉树(Huffman树)、贪心算法—— Huffman编码

1、外部带权外部路径长度、Huffman树 从图中可以看出,深度越浅的叶子结点权重越大,深度越深的叶子结点权重越小的话,得出的带权外部路径长度越小。 Huffman树就是使得外部带权路径最小的二叉树 2、如何构造Huffman树 (1&#xf…

【Python-MP4文体提取】

Python-MP4文体提取 ■ pip 和 setuptools工具■ OpenCV和Tesseract■ Tesseract OCR V5.0安装教程(Windows)■ 1. 运行程序出现如下问题:我们需要安装Tesseract OCR■ 2. 下载Tesseract-OCR■ 3. 安装Tesseract-OCR■ 4. 添加到环境变量的系…

Golang中的上下文-context包的简介及使用

文章目录 简介context.Background()上下文取消函数上下文值传递建议Reference 简介 Go语言中的context包定义了一个名为Context的类型,它定义并传递截止日期、取消信号和其他请求范围的值,形成一个链式模型。如果我们查看官方文档,它是这样说…

Ollama利用嵌入模型实现RAG应用

Ollama支持embedding models嵌入模型,从而支持RAG(retrieval augmented generation)应用,结合文本提示词,检索到文档或相关数据。嵌入模型是通过训练生成向量嵌入,这是一长串数字数组,代表文本序…

练习 21 Web [GXYCTF2019]BabySQli

SQL联合查询,注意有源码看源码,Base64以及32的区别,MD5碰撞 打开后有登录框,先随意登录尝试 只有输入admin才是返回wrong pass! 其他返回wrong user 所以用户名字段一定要输入admin 养成好习惯,先查看源码…

kali上python3切换python2环境

一、然后打开终端输入 python --version 二、 打开终端分别输入下面两条命令: update-alternatives --install /usr/bin/python python /usr/bin/python2 100 update-alternatives --install /usr/bin/python python /usr/bin/python3 150 三、 如果需要切换python版…

Windows系统C盘空间优化进阶:磁盘清理与Docker日志管理

Windows系统C盘空间优化进阶:磁盘清理与Docker日志管理 文章目录 Windows系统C盘空间优化进阶:磁盘清理与Docker日志管理磁盘清理工具 使用“运行”命令访问磁盘清理利用存储感知自动管理空间清理WinSxS文件夹结合手动清理策略 小结删除临时文件总结&…

流式密集视频字幕

流式密集视频字幕 摘要1 IntroductionRelated Work3 Streaming Dense Video Captioning Streaming Dense Video Captioning 摘要 对于一个密集视频字幕生成模型,预测在视频中时间上定位的字幕,理想情况下应该能够处理长的输入视频,预测丰富、…

Linux系统概述与安装

Linux的介绍 Linux内核 Linux内核是 Linux 操作系统主要组件,也是计算机硬件与其软件之间的交互入口。它负责两者之间的通信,还要尽可能高效地管理资源 Linux Shell shell是系统的用户界面,提供了用户与内核进行交互操作的一种接口 Linux文…

java数组.day16(冒泡排序,稀疏数组)

冒泡排序 冒泡排序无疑是最为出名的排序算法之一,总共有八大排序! 冒泡的代码还是相当简单的,两层循环,外层冒泡轮数,里层依次比较,江湖中人人尽皆知。 我们看到嵌套循环,应该立马就可以得出这个算法的时…