代码学习记录40---动态规划

随想录日记part40

t i m e : time: time 2024.04.10



主要内容:今天开始要学习动态规划的相关知识了,今天的内容主要涉及:
买卖股票的最佳时机加强版。

  • 123.买卖股票的最佳时机III
  • 188.买卖股票的最佳时机IV


动态规划五部曲:
【1】.确定dp数组以及下标的含义
【2】.确定递推公式
【3】.dp数组如何初始化
【4】.确定遍历顺序
【5】.举例推导dp数组

Topic1买卖股票的最佳时机|||

在这里插入图片描述

思路:

接下来进行动规五步曲:
1.确定dp数组以及下标的含义:
一天一共就有五个状态,

  • 0.没有操作 (其实我们也可以不设置这个状态)
  • 1.第一次持有股票
  • 2.第一次不持有股票
  • 3.第二次持有股票
  • 4.第二次不持有股票

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。
需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。
2.确定递推公式:
【达到dp[i][1]有两个操作】:
操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?
一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);
【dp[i][2]也有两个操作】:
操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
同理可推出剩下状态部分:
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

3.dp数组如何初始化
dp数组如何初始化
第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;
第0天做第一次买入的操作,dp[0][1] = -prices[0];
第0天做第一次卖出的操作,这个初始值应该是多少呢?
此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;
第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
所以第二次买入操作,初始化为:dp[0][3] = -prices[0];
同理第二次卖出初始化dp[0][4] = 0;
4.确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
5.举例推导dp数组
以输入[1,2,3,4,5]为例在这里插入图片描述

代码如下:

class Solution {class Solution {public int maxProfit(int[] prices) {// 定义dpint len = prices.length;int[][] dp = new int[len][5];// 初始化dp[0][1] = -prices[0];dp[0][3] = -prices[0];// 状态转移for (int i = 1; i < len; i++) {dp[i][0] = dp[i - 1][0];dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = Math.max(dp[i - 1][1] + prices[i], dp[i - 1][2]);dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = Math.max(dp[i - 1][3] + prices[i], dp[i - 1][4]);}return dp[len - 1][4];}
}

时间复杂度 O ( n ) O(n) O(n)
空间复杂度 O ( n ∗ 5 ) O(n*5) O(n5)



Topic2买卖股票的最佳时机IV

题目:
在这里插入图片描述

思路:

参考上一题

class Solution {public int maxProfit(int k, int[] prices) {// 定义dpint len = prices.length;int[][] dp = new int[len][2 * k + 1];// 初始化for (int i = 1; i < 2 * k + 1; i = i + 2) {dp[0][i] = -prices[0];}for (int i = 1; i < len; i++) {for (int j = 0; j < 2 * k - 1; j = j + 2) {dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = Math.max(dp[i - 1][j + 1] + prices[i], dp[i - 1][j + 2]);}}return dp[len - 1][2 * k];}
}

时间复杂度 O ( n ∗ k ) O(n*k) O(nk)
空间复杂度 O ( n ∗ k ) O(n*k) O(nk)



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/305369.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【深入理解计算机系统第3版】有符号数和无符号数转换以及移位运算练习题2.23

题目 考虑下面的C函数&#xff1a; int fun1(unsigned word) {return (int) ((word << 24) >> 24); }int fun2(unsigned word) {return ((int) word << 24) >> 24; } 假设一个采用补码运算的机器上以32位程序来执行这些函数。还假设有符号数值的右移…

git操作码云(gitee)创建仓库到上传到远程仓库

想必有的小伙伴在为上传到码云远程仓库而感到烦恼吧&#xff01;本篇为大家详细讲解实现过程&#xff0c;跟着我的步伐一步一步来。 我就当大家已经注册好了码云 一、在码云上需要的操作 接下来我们需要使用到 git 了 二、git 上的操作 到了咋们的git了&#xff0c;开整 首…

基于PyAutoGUI图片定位的自动化截图工具--jmeter部分

1、计划 压测完成后需要编写性能测试报告&#xff0c;报告中所需数据截图较多&#xff0c;使用自动化操作方便快捷&#xff0c;就编写一个界面工具以便后续复用。之前编写过loadrunner报告的自动化截图脚本&#xff0c;现在用jmeter也比较多&#xff0c;就编写jmeter部分&#…

树形查找试题(二叉树、红黑树)

一、单项选择题 01.对于二叉排序树&#xff0c;下面的说法中&#xff0c;()是正确的。 A.二叉排序树是动态树表&#xff0c;查找失败时插入新结点&#xff0c;会引起树的重新分裂和组合 B.对二叉排序树进行层序遍历可得到有序序列 C.用逐点插入法构造二叉排序树&#xff0c;若先…

上海人工智能实验室的书生·浦语大模型学习笔记(第二期第三课——上篇)

书生浦语是上海人工智能实验室和商汤科技联合研发的一款大模型&#xff0c;这次有机会参与试用&#xff0c;特记录每次学习情况。 一、课程笔记 本次学习的是RAG&#xff08;Retrieval Augmented Generation&#xff09;技术&#xff0c;它是通过检索与用户输入相关的信息片段…

【简单讲解下WebView的使用与后退键处理】

&#x1f308;个人主页: 程序员不想敲代码啊 &#x1f3c6;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f44d;点赞⭐评论⭐收藏 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共…

MySQL操作DML

目录 1.概述 2.插入 3.更新 4.删除 5.查询 6.小结 1.概述 数据库DML是数据库操作语言&#xff08;Data Manipulation Language&#xff09;的简称&#xff0c;主要用于对数据库中的数据进行增加、修改、删除等操作。它是SQL语言的一部分&#xff0c;用于实现对数据库中数…

力扣--图论/Prim1584.连接所有点的最小费用

思路分析&#xff1a; 初始化&#xff1a;获取点的数量&#xff0c;并创建两个辅助数组 adjvex 和 lowcost&#xff0c;分别用于记录最小生成树的边信息和每个顶点到最小生成树的距离。Prim算法循环&#xff1a;在每一次循环中&#xff0c;选择一个未加入最小生成树的顶点 k&a…

软考122-上午题-【软件工程】-需求分析

一、软件需求 在进行需求获取之前&#xff0c;首先要明确需要获取什么&#xff0c;也就是需求包含哪些内容。 软件需求是指用户对目标软件系统在功能、行为、性能、设计约束等方面的期望。通常&#xff0c;这些需求包括功能需求、性能需求、用户或人的因素、环境需求、界面需…

科研学习|可视化——相关性结果的可视化

一、相关性分析介绍 相关性分析是指研究两种或者两种以上的变量之间相关关系的统计分析方法&#xff0c;一般分析步骤为&#xff1a; 1&#xff09;判断变量间是否存在关联&#xff1b;2&#xff09;分析关联关系&#xff08;线性/非线性&#xff09;、关联方向&#xff08;正相…

Qt中的网络通信

C没有封装专门的网络套接字的类&#xff0c;因此C只能调用C对应的API&#xff0c;而在Linux和Windows环境下的API都是不一样的 Qt作为一个C框架提供了相关封装好的套接字通信类 在Qt中需要用到两个类&#xff0c;两个类都属于network且都是属于IO操作&#xff0c;只不过这两个类…

混合云构建-如何通过Site to Site VPN 连接 AWS 和GCP云并建立一个高可用的VPN通信

如果我们的业务环境既有AWS云又有GCP云,那么就需要将他们打通,最经济便捷的方式就是通过Site-to-Site VPN连接AWS和GCP云,你需要在两个云平台上分别配置VPN网关,并建立一个VPN隧道来安全地连接这两个环境,我们下面演示一个高可用场景下的S2S VPN线路构建,采用动态BGP协议…

Innodb架构解析

整体架构 通过《面试官&#xff1a;一条SQL是如何执行的&#xff1f;》我们了解了MySQL架构&#xff0c;下面我们看下Innodb架构。 innodb最早由Innobase Oy公司开发&#xff0c;5.5版本开始是MySQL默认存储引擎&#xff0c;该存储引擎是第一个完整支持ACID事务的MySQL存储引…

git修改本地提交历史邮箱地址

1、Git&#xff08;Git&#xff09; 2、修改Git本地提交历史中的邮箱地址 使用 git rebase 命令进行交互式重置。 具体步骤如下&#xff1a;&#xff08;https://git-scm.com/docs/git-rebase&#xff09; 1、查看提交历史&#xff1a; 使用 git log 命令列出提交历史&#x…

弹簧、质量的bode、nyquist与根轨迹图

在控制系统分析中&#xff0c;Bode图、Nyquist图和根轨迹图都是重要的工具&#xff0c;用于评估和分析系统的性能。这些系统的Nyquist图提供了最大的旋转&#xff0c;即它们在频率变化时表现出最大的相位变化。当Nyquist图完全位于虚轴上时&#xff0c;意味着系统的增益&#x…

【学习】移动端兼容性测试有什么方法及重要性

随着移动互联网的快速发展&#xff0c;移动应用程序已经成为人们日常生活中不可或缺的一部分。然而&#xff0c;由于各种移动设备的硬件和软件差异&#xff0c;移动应用程序的兼容性问题也越来越突出。因此&#xff0c;移动端兼容性测试成为了一个重要的环节&#xff0c;它可以…

猝不及防 CCF-B ICPP 2024投稿延期至4月22日提交摘要 机会来了别错过

会议之眼 快讯 第53届ICPP&#xff08;International Conference on Parallel Processing&#xff09;即国际并行处理会议将于 2024年 8月12日-15日在瑞典哥特兰岛举行&#xff01;ICPP是世界上最古老的连续举办的并行计算计算机科学会议之一。它是学术界、工业界和政府的研究…

1572. 【基础赛】涂色(paint)

1572. 【基础赛】涂色&#xff08;paint&#xff09; (Input: paint.in, Output: paint.out) 时间限制: 2 s 空间限制: 256 MB 具体限制 题目描述 Introl获得了一个N行的杨辉三角&#xff0c;他将每行中值为奇数的位置涂为了黑色。 Chihiro将提出M次询问&#xff0c;在第L…

C语言强制类型转换

目录 王道ppt总结&#xff1a; ​编辑相关博主文章&#xff1a; 王道ppt总结&#xff1a; 相关博主文章&#xff1a;char范围详解&#xff0c;为什么是-128~127,以及int类型范围详解&#xff08;整型数据在内存中的存储&#xff09;_char型和int型数据范围-CSDN博客https://b…

数据分析——数据规范化

数据规范化是数据分析中的一个重要步骤&#xff0c;其目的在于确保数据的一致性和可比性&#xff0c;提高数据质量和分析结果的准确性。以下是一些数据规范化的常见方法和技术&#xff1a; 数据清洗&#xff1a;此步骤主要清除数据中的重复项、空格、格式错误等&#xff0c;确…