使用 Prometheus 在 KubeSphere 上监控 KubeEdge 边缘节点(Jetson) CPU、GPU 状态

作者:朱亚光,之江实验室工程师,云原生/开源爱好者。

KubeSphere 边缘节点的可观测性

在边缘计算场景下,KubeSphere 基于 KubeEdge 实现应用与工作负载在云端与边缘节点的统一分发与管理,解决在海量边、端设备上完成应用交付、运维、管控的需求。

根据 KubeSphere 的支持矩阵,只有 1.23.x 版本的 K8s 支持边缘计算,而且 KubeSphere 界面也没有边缘节点资源使用率等监控信息的显示。

本文基于 KubeSphere 和 KubeEdge 构建云边一体化计算平台,通过 Prometheus 来监控 Nvidia Jetson 边缘设备状态,实现 KubeSphere 在边缘节点的可观测性。

组件版本
KubeSphere3.4.1
containerd1.7.2
K8s1.26.0
KubeEdge1.15.1
Jetson 型号NVIDIA Jetson Xavier NX (16GB ram)
Jtop4.2.7
JetPack5.1.3-b29
Docker24.0.5

部署 K8s 环境

参考 KubeSphere 部署文档。通过 KubeKey 可以快速部署一套 K8s 集群。

//  all in one 方式部署一台 单 master 的 k8s 集群./kk create cluster --with-kubernetes v1.26.0 --with-kubesphere v3.4.1 --container-manager containerd

部署 KubeEdge 环境

参考 在 KubeSphere 上部署最新版的 KubeEdge,部署 KubeEdge。

开启边缘节点日志查询功能

  1. vim /etc/kubeedge/config/edgecore.yaml

  2. enable=true

开启后,可以方便查询 pod 日志,定位问题。

修改 KubeSphere 配置

开启 KubeEdge 边缘节点插件

  1. 修改 configmap--ClusterConfiguration

  1. advertiseAddress 设置为 cloudhub 所在的物理机地址

KubeSphere 开启边缘节点文档链接:https://www.kubesphere.io/zh/docs/v3.3/pluggable-components/kubeedge/。

修改完发现可以显示边缘节点,但是没有 CPU 和 内存信息,发现边缘节点没有 node-exporter 这个 pod。

修改 node-exporter 亲和性

kubectl get ds -n kubesphere-monitoring-system 发现不会部署到边缘节点上。

修改为:

    spec:affinity:nodeAffinity:requiredDuringSchedulingIgnoredDuringExecution:nodeSelectorTerms:- matchExpressions:- key: node-role.kubernetes.io/edgetest  -- 修改这里,让亲和性失效operator: DoesNotExist

node-exporter 是部署在边缘节点上了,但是 pods 起不来。

通过kubectl edit 该失败的 pod,我们发现 node-exporter 这个pod 里面有两个容器,其中 kube-rbac-proxy 这个容器启动失败。看这个容器的日志,发现是 kube-rbac-proxy 想要获取 KUBERNETES_SERVICE_HOSTKUBERNETES_SERVICE_PORT 这两个环境变量,但是获取失败,所以容器启动失败。

在 K8s 的集群中,当创建 pod 时,会在 pod 中增加 KUBERNETES_SERVICE_HOSTKUBERNETES_SERVICE_PORT 这两个环境变量,用于 pod 内的进程对 kube-apiserver 的访问,但是在 KubeEdge 的 edge 节点上创建的 pod 中,这两个环境变量存在,但它是空的。

向 KubeEdge 的开发人员咨询,他们说会在 KubeEdge 1.17 版本上增加这两个环境变量的设置。参考如下: https://github.com/wackxu/kubeedge/blob/4a7c00783de9b11e56e56968b2cc950a7d32a403/docs/proposals/edge-pod-list-watch-natively.md。

另一方面,推荐安装 EdgeMesh,安装之后在 edge 的 pod 上就可以访问 kubernetes.default.svc.cluster.local:443 了。

EdgeMesh 部署

  1. 配置 cloudcore configmap

    kubectl edit cm cloudcore -n kubeedge 设置 dynamicController=true.

    修改完 重启 cloudcore kubectl delete pod cloudcore-776ffcbbb9-s6ff8 -n kubeedge

  2. 配置 edgecore 模块,配置 metaServer=true 和 clusterDNS

    $ vim /etc/kubeedge/config/edgecore.yamlmodules:...metaManager:metaServer:enable: true   //配置这里
    ...modules:...edged:...tailoredKubeletConfig:...clusterDNS:     //配置这里- 169.254.96.16
    ...//重启edgecore
    $ systemctl restart edgecore

修改完,验证是否修改成功。

$ curl 127.0.0.1:10550/api/v1/services{"apiVersion":"v1","items":[{"apiVersion":"v1","kind":"Service","metadata":{"creationTimestamp":"2021-04-14T06:30:05Z","labels":{"component":"apiserver","provider":"kubernetes"},"name":"kubernetes","namespace":"default","resourceVersion":"147","selfLink":"default/services/kubernetes","uid":"55eeebea-08cf-4d1a-8b04-e85f8ae112a9"},"spec":{"clusterIP":"10.96.0.1","ports":[{"name":"https","port":443,"protocol":"TCP","targetPort":6443}],"sessionAffinity":"None","type":"ClusterIP"},"status":{"loadBalancer":{}}},{"apiVersion":"v1","kind":"Service","metadata":{"annotations":{"prometheus.io/port":"9153","prometheus.io/scrape":"true"},"creationTimestamp":"2021-04-14T06:30:07Z","labels":{"k8s-app":"kube-dns","kubernetes.io/cluster-service":"true","kubernetes.io/name":"KubeDNS"},"name":"kube-dns","namespace":"kube-system","resourceVersion":"203","selfLink":"kube-system/services/kube-dns","uid":"c221ac20-cbfa-406b-812a-c44b9d82d6dc"},"spec":{"clusterIP":"10.96.0.10","ports":[{"name":"dns","port":53,"protocol":"UDP","targetPort":53},{"name":"dns-tcp","port":53,"protocol":"TCP","targetPort":53},{"name":"metrics","port":9153,"protocol":"TCP","targetPort":9153}],"selector":{"k8s-app":"kube-dns"},"sessionAffinity":"None","type":"ClusterIP"},"status":{"loadBalancer":{}}}],"kind":"ServiceList","metadata":{"resourceVersion":"377360","selfLink":"/api/v1/services"}}
  1. 安装 EdgeMesh

    git clone https://github.com/kubeedge/edgemesh.git
    cd edgemeshkubectl apply -f build/crds/istio/kubectl apply -f build/agent/resources/

dnsPolicy

EdgeMesh 部署完成后,edge 节点上的 node-exporter 中的两个境变量还是空的,也无法访问 kubernetes.default.svc.cluster.local:443,原因是该 pod 中 DNS 服务器配置错误,应该是 169.254.96.16 的,但是却是跟宿主机一样的 DNS 配置。

kubectl exec -it node-exporter-hcmfg -n kubesphere-monitoring-system -- sh
Defaulted container "node-exporter" out of: node-exporter, kube-rbac-proxy
$ cat /etc/resolv.conf
nameserver 127.0.0.53

将 dnsPolicy 修改为 ClusterFirstWithHostNet,之后重启 node-exporter,DNS 的配置正确。

kubectl edit ds node-exporter -n kubesphere-monitoring-system

  dnsPolicy: ClusterFirstWithHostNethostNetwork: true

添加环境变量

vim /etc/systemd/system/edgecore.service

Environment=METASERVER_DUMMY_IP=kubernetes.default.svc.cluster.local
Environment=METASERVER_DUMMY_PORT=443

修改完重启 edgecore。

systemctl daemon-reload
systemctl restart edgecore

node-exporter 变成 running!!!!

在边缘节点 curl http://127.0.0.1:9100/metrics 可以发现采集到了边缘节点的数据。

最后我们可以将 KubeSphere 的 K8s 服务通过 NodePort 暴露出来。就可以在页面查看。

apiVersion: v1
kind: Service
metadata:labels:app.kubernetes.io/component: prometheusapp.kubernetes.io/instance: k8sapp.kubernetes.io/name: prometheusapp.kubernetes.io/part-of: kube-prometheusapp.kubernetes.io/version: 2.39.1name: prometheus-k8s-nodeportnamespace: kubesphere-monitoring-system
spec:ports:- port: 9090targetPort: 9090protocol: TCPnodePort: 32143selector:app.kubernetes.io/component: prometheusapp.kubernetes.io/instance: k8sapp.kubernetes.io/name: prometheusapp.kubernetes.io/part-of: kube-prometheussessionAffinity: ClientIPsessionAffinityConfig:clientIP:timeoutSeconds: 10800type: NodePort

通过访问 master IP + 32143 端口,就可以访问边缘节点 node-exporter 数据。

然后界面上也出现了 CPU 和内存的信息。

搞定了 CPU 和内存,接下来就是 GPU 了。

监控 Jetson GPU 状态

安装 Jtop

首先 Jetson 是一个 ARM 设备,所以无法运行 nvidia-smi ,需要安装 Jtop。

sudo apt-get install python3-pip python3-dev -y
sudo -H pip3 install jetson-stats
sudo systemctl restart jtop.service

安装 Jetson GPU Exporter

参考博客,制作 Jetson GPU Exporter 镜像,并且对应的 Grafana 仪表盘都有。

Dockerfile

FROM python:3-buster
RUN pip install --upgrade pip && pip install -U jetson-stats prometheus-client
RUN mkdir -p /root
COPY jetson_stats_prometheus_collector.py /root/jetson_stats_prometheus_collector.py
WORKDIR /root
USER root
RUN chmod +x /root/jetson_stats_prometheus_collector.py
ENTRYPOINT ["python3", "/root/jetson_stats_prometheus_collector.py"]

jetson_stats_prometheus_collector.py 代码

#!/usr/bin/python3
# -*- coding: utf-8 -*-import atexit
import os
from jtop import jtop, JtopException
from prometheus_client.core import InfoMetricFamily, GaugeMetricFamily, REGISTRY, CounterMetricFamily
from prometheus_client import make_wsgi_app
from wsgiref.simple_server import make_serverclass CustomCollector(object):def __init__(self):atexit.register(self.cleanup)self._jetson = jtop()self._jetson.start()def cleanup(self):print("Closing jetson-stats connection...")self._jetson.close()def collect(self):# spin传入true,表示不会等待下一次数据读取完成if self._jetson.ok(spin=True):## Board info#i = InfoMetricFamily('gpu_info_board', 'Board sys info', labels=['board_info'])i.add_metric(['info'], {'machine': self._jetson.board['info']['machine'] if 'machine' in self._jetson.board.get('info', {}) else self._jetson.board['hardware']['Module'],'jetpack': self._jetson.board['info']['jetpack'] if 'jetpack' in self._jetson.board.get('info', {}) else self._jetson.board['hardware']['Jetpack'],'l4t':  self._jetson.board['info']['L4T'] if 'L4T' in self._jetson.board.get('info', {}) else self._jetson.board['hardware']['L4T']})yield ii = InfoMetricFamily('gpu_info_hardware', 'Board hardware info', labels=['board_hw'])i.add_metric(['hardware'], {'codename': self._jetson.board['hardware'].get('Codename', self._jetson.board['hardware'].get('CODENAME', 'unknown')),'soc': self._jetson.board['hardware'].get('SoC', self._jetson.board['hardware'].get('SOC', 'unknown')),'module': self._jetson.board['hardware'].get('P-Number', self._jetson.board['hardware'].get('MODULE', 'unknown')),'board': self._jetson.board['hardware'].get('699-level Part Number', self._jetson.board['hardware'].get('BOARD', 'unknown')),'cuda_arch_bin': self._jetson.board['hardware'].get('CUDA Arch BIN', self._jetson.board['hardware'].get('CUDA_ARCH_BIN', 'unknown')),'serial_number': self._jetson.board['hardware'].get('Serial Number', self._jetson.board['hardware'].get('SERIAL_NUMBER', 'unknown')),})yield i## NV power mode#i = InfoMetricFamily('gpu_nvpmode', 'NV power mode', labels=['nvpmode'])i.add_metric(['mode'], {'mode': self._jetson.nvpmodel.name})yield i## System uptime#g = GaugeMetricFamily('gpu_uptime', 'System uptime', labels=['uptime'])days = self._jetson.uptime.daysseconds = self._jetson.uptime.secondshours = seconds//3600minutes = (seconds//60) % 60g.add_metric(['days'], days)g.add_metric(['hours'], hours)g.add_metric(['minutes'], minutes)yield g## CPU usage#g = GaugeMetricFamily('gpu_usage_cpu', 'CPU % schedutil', labels=['cpu'])g.add_metric(['cpu_1'], self._jetson.stats['CPU1'] if ('CPU1' in self._jetson.stats and isinstance(self._jetson.stats['CPU1'], int)) else 0)g.add_metric(['cpu_2'], self._jetson.stats['CPU2'] if ('CPU2' in self._jetson.stats and isinstance(self._jetson.stats['CPU2'], int)) else 0)g.add_metric(['cpu_3'], self._jetson.stats['CPU3'] if ('CPU3' in self._jetson.stats and isinstance(self._jetson.stats['CPU3'], int)) else 0)g.add_metric(['cpu_4'], self._jetson.stats['CPU4'] if ('CPU4' in self._jetson.stats and isinstance(self._jetson.stats['CPU4'], int)) else 0)g.add_metric(['cpu_5'], self._jetson.stats['CPU5'] if ('CPU5' in self._jetson.stats and isinstance(self._jetson.stats['CPU5'], int)) else 0)g.add_metric(['cpu_6'], self._jetson.stats['CPU6'] if ('CPU6' in self._jetson.stats and isinstance(self._jetson.stats['CPU6'], int)) else 0)g.add_metric(['cpu_7'], self._jetson.stats['CPU7'] if ('CPU7' in self._jetson.stats and isinstance(self._jetson.stats['CPU7'], int)) else 0)g.add_metric(['cpu_8'], self._jetson.stats['CPU8'] if ('CPU8' in self._jetson.stats and isinstance(self._jetson.stats['CPU8'], int)) else 0)yield g## GPU usage#g = GaugeMetricFamily('gpu_usage_gpu', 'GPU % schedutil', labels=['gpu'])g.add_metric(['val'], self._jetson.stats['GPU'])yield g## Fan usage#g = GaugeMetricFamily('gpu_usage_fan', 'Fan usage', labels=['fan'])g.add_metric(['speed'], self._jetson.fan.get('speed', self._jetson.fan.get('pwmfan', {'speed': [0] })['speed'][0]))yield g## Sensor temperatures#g = GaugeMetricFamily('gpu_temperatures', 'Sensor temperatures', labels=['temperature'])keys = ['AO', 'GPU', 'Tdiode', 'AUX', 'CPU', 'thermal', 'Tboard']for key in keys:if key in self._jetson.temperature:g.add_metric([key.lower()], self._jetson.temperature[key]['temp'] if isinstance(self._jetson.temperature[key], dict) else self._jetson.temperature.get(key, 0))yield g## Power#g = GaugeMetricFamily('gpu_usage_power', 'Power usage', labels=['power'])if isinstance(self._jetson.power, dict):g.add_metric(['cv'], self._jetson.power['rail']['VDD_CPU_CV']['avg'] if 'VDD_CPU_CV' in self._jetson.power['rail'] else self._jetson.power['rail'].get('CV', { 'avg': 0 }).get('avg'))g.add_metric(['gpu'], self._jetson.power['rail']['VDD_GPU_SOC']['avg'] if 'VDD_GPU_SOC' in self._jetson.power['rail'] else self._jetson.power['rail'].get('GPU', { 'avg': 0 }).get('avg'))g.add_metric(['sys5v'], self._jetson.power['rail']['VIN_SYS_5V0']['avg'] if 'VIN_SYS_5V0' in self._jetson.power['rail'] else self._jetson.power['rail'].get('SYS5V', { 'avg': 0 }).get('avg'))if isinstance(self._jetson.power, tuple):g.add_metric(['cv'], self._jetson.power[1]['CV']['cur'] if 'CV' in self._jetson.power[1] else 0)g.add_metric(['gpu'], self._jetson.power[1]['GPU']['cur'] if 'GPU' in self._jetson.power[1] else 0)g.add_metric(['sys5v'], self._jetson.power[1]['SYS5V']['cur'] if 'SYS5V' in self._jetson.power[1] else 0)yield g## Processes#try:processes = self._jetson.processes# key exists in dicti = InfoMetricFamily('gpu_processes', 'Process usage', labels=['process'])for index in range(len(processes)):i.add_metric(['info'], {'pid': str(processes[index][0]),'user': processes[index][1],'gpu': processes[index][2],'type': processes[index][3],'priority': str(processes[index][4]),'state': processes[index][5],'cpu': str(processes[index][6]),'memory': str(processes[index][7]),'gpu_memory': str(processes[index][8]),'name': processes[index][9],})yield iexcept AttributeError:# key doesn't exist in dicti = 0if __name__ == '__main__':port = os.environ.get('PORT', 9998)REGISTRY.register(CustomCollector())app = make_wsgi_app()httpd = make_server('', int(port), app)print('Serving on port: ', port)try:httpd.serve_forever()except KeyboardInterrupt:print('Goodbye!')

记得给 Jetson 的板子打标签,确保 GPU 的 Exporter 在 Jetson 上执行。否则在其他 node 上执行会因为采集不到数据而报错.

kubectl label node edge-wpx machine.type=jetson

新建 KubeSphere 资源

新建 ServiceAccount、DaemonSet、Service、servicemonitor,目的是将 jetson-exporter 采集到的数据提供给 KubeSphere 的 Prometheus。

apiVersion: v1
kind: ServiceAccount
metadata:labels:app.kubernetes.io/component: exporterapp.kubernetes.io/name: jetson-exporterapp.kubernetes.io/part-of: kube-prometheusapp.kubernetes.io/version: 1.0.0name: jetson-exporternamespace: kubesphere-monitoring-system
---
apiVersion: apps/v1
kind: DaemonSet
metadata:labels:app.kubernetes.io/component: exporterapp.kubernetes.io/name: jetson-exporterapp.kubernetes.io/part-of: kube-prometheusapp.kubernetes.io/version: 1.0.0name: jetson-exporternamespace: kubesphere-monitoring-system
spec:revisionHistoryLimit: 10selector:matchLabels:app.kubernetes.io/component: exporterapp.kubernetes.io/name: jetson-exporterapp.kubernetes.io/part-of: kube-prometheustemplate:metadata:labels:app.kubernetes.io/component: exporterapp.kubernetes.io/name: jetson-exporterapp.kubernetes.io/part-of: kube-prometheusapp.kubernetes.io/version: 1.0.0spec:affinity:nodeAffinity:requiredDuringSchedulingIgnoredDuringExecution:nodeSelectorTerms:- matchExpressions:- key: node-role.kubernetes.io/edgeoperator: Existscontainers:- image: jetson-status-exporter:v1imagePullPolicy: IfNotPresentname: jetson-exporterresources:limits:cpu: "1"memory: 500Mirequests:cpu: 102mmemory: 180Miports:- containerPort: 9998hostPort: 9998name: httpprotocol: TCPterminationMessagePath: /dev/termination-logterminationMessagePolicy: FilevolumeMounts:- mountPath: /run/jtop.sockname: jtop-sockreadOnly: truednsPolicy: ClusterFirstWithHostNethostNetwork: truehostPID: truenodeSelector:kubernetes.io/os: linuxmachine.type: jetsonrestartPolicy: AlwaysschedulerName: default-schedulerserviceAccount: jetson-exporterterminationGracePeriodSeconds: 30tolerations:- operator: Existsvolumes:- hostPath:path: /run/jtop.socktype: Socketname: jtop-sockupdateStrategy:rollingUpdate:maxSurge: 0maxUnavailable: 1type: RollingUpdate
---
apiVersion: v1
kind: Service
metadata:labels:app.kubernetes.io/component: exporterapp.kubernetes.io/name: jetson-exporterapp.kubernetes.io/part-of: kube-prometheusapp.kubernetes.io/version: 1.0.0name: jetson-exporternamespace: kubesphere-monitoring-system
spec:clusterIP: NoneclusterIPs:- NoneinternalTrafficPolicy: ClusteripFamilies:- IPv4ipFamilyPolicy: SingleStackports:- name: httpport: 9998protocol: TCPtargetPort: httpselector:app.kubernetes.io/component: exporterapp.kubernetes.io/name: jetson-exporterapp.kubernetes.io/part-of: kube-prometheussessionAffinity: Nonetype: ClusterIP
---
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:labels:app.kubernetes.io/component: exporterapp.kubernetes.io/name: jetson-exporterapp.kubernetes.io/part-of: kube-prometheusapp.kubernetes.io/vendor: kubesphereapp.kubernetes.io/version: 1.0.0name: jetson-exporternamespace: kubesphere-monitoring-system
spec:endpoints:- bearerTokenFile: /var/run/secrets/kubernetes.io/serviceaccount/tokeninterval: 1mport: httprelabelings:- action: replaceregex: (.*)replacement: $1sourceLabels:- __meta_kubernetes_pod_node_nametargetLabel: instance- action: labeldropregex: (service|endpoint|container)scheme: httptlsConfig:insecureSkipVerify: truejobLabel: app.kubernetes.io/nameselector:matchLabels:app.kubernetes.io/component: exporterapp.kubernetes.io/name: jetson-exporterapp.kubernetes.io/part-of: kube-prometheus

部署完成后,jetson-exporter pod running。

重启 Prometheus pod,重新加载配置后,可以在 Prometheus 界面看到新增加的 GPU exporter 的 target。

kubectl delete pod prometheus-k8s-0 -n kubesphere-monitoring-system

在 KubeSphere 前端,查看 GPU 监控数据

前端需要修改 KubeSphere 的 console 的代码,这里属于前端内容,这里就不详细说明了。

其次将 Prometheus 的 SVC 端口暴露出来,通过 nodeport 的方式将 Prometheus 的端口暴露出来,前端通过 http 接口来查询 GPU 的状态。

apiVersion: v1
kind: Service
metadata:labels:app.kubernetes.io/component: prometheusapp.kubernetes.io/instance: k8sapp.kubernetes.io/name: prometheusapp.kubernetes.io/part-of: kube-prometheusapp.kubernetes.io/version: 2.39.1name: prometheus-k8s-nodeportnamespace: kubesphere-monitoring-system
spec:ports:- port: 9090targetPort: 9090protocol: TCPnodePort: 32143selector:app.kubernetes.io/component: prometheusapp.kubernetes.io/instance: k8sapp.kubernetes.io/name: prometheusapp.kubernetes.io/part-of: kube-prometheussessionAffinity: ClientIPsessionAffinityConfig:clientIP:timeoutSeconds: 10800type: NodePort

http 接口

查询瞬时值:
get http://masterip:32143/api/v1/query?query=gpu_info_board_info&time=1711431293.686
get http://masterip:32143/api/v1/query?query=gpu_info_hardware_info&time=1711431590.574
get http://masterip:32143/api/v1/query?query=gpu_usage_gpu&time=1711431590.574
其中query为查询字段名,time是查询的时间查询某个时间段的采集值:
get http://10.11.140.87:32143/api/v1/query_range?query=gpu_usage_gpu&start=1711428221.998&end=1711431821.998&step=14
其中query为查询字段名,start和end是起始结束时间,step是间隔时间

这样就成功在 KubeSphere,监控 KubeEdge 边缘节点 Jetson 的 GPU 状态了。

总结

基于 KubeEdge,我们在 KubeSphere 的前端界面上实现了边缘设备的可观测性,包括 GPU 信息的可观测性。

对于边缘节点 CPU、内存状态的监控,首先修改亲和性,让 KubeSphere 自带的 node-exporter 能够采集边缘节点监控数据,接下来利用 KubeEdge 的 EdgeMesh 将采集的数据提供给 KubeSphere 的 Prometheus。这样就实现了 CPU、内存信息的监控。

对于边缘节点 GPU 状态的监控,安装 jtop 获取 GPU 使用率、温度等数据,然后开发 Jetson GPU Exporter,将 jtop 获取的信息发送给 KubeSphere 的 Prometheus,通过修改 KubeSphere 前端 ks-console 的代码,在界面上通过 http 接口获取 Prometheus 数据,这样就实现了 GPU 使用率等信息监控。

本文由博客一文多发平台 OpenWrite 发布!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/305485.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis(三) String字符串

文章目录 前言常见命令SETGETMSETMGETINCRINCRBYDECRDECRBYINCRBYFLOATAPPENDGETRANGESETRANGESTRLEN命令小结 前言 Redis 的数据有很多种数据类型,包括字符串类型、列表类型、哈希类型、集合类型、有序集合类型等。这几种数据类型是针对于 value 来说的&#xff0…

搜维尔科技:【煤矿安全仿真】煤矿事故预防处置VR系统,矿山顶板灾害,冲击地压灾害等预防演练!

产品概述 煤矿事故预防处置VR系统 系统内容: 事故预防处置VR系统的内容包括:火灾的预防措施、火灾预兆、防灭火系统、火灾案例重现、顶板事故预兆、顶板事故原因、顶板事故案例重现、瓦斯概念及性质、瓦斯的涌出形式、瓦斯预兆、瓦斯爆炸条件及预防措…

怎样将PDF转成PPT,有免费的工具吗?

PDF转换为PPT的需求在现代办公和学习中越来越常见。很多人可能遇到过需要将PDF文件中的内容转移到PPT中以方便编辑和展示的情况。幸运的是,现在市面上有许多工具可以帮助我们实现这一目标,而且其中不乏一些免费的选项。本文将详细介绍如何使用这些免费工…

基于级联H桥的多电平逆变器PWM控制策略的simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 级联H桥(CHB)多电平逆变器是一种通过多个H桥单元级联实现更高电压等级和更高质量输出波形的电力电子转换装置。这种逆变器在高压大功率场合应用广泛&am…

参花期刊投稿发表论文

《参花》是由国家新闻出版总署批准,吉林省文化和旅游厅主管,吉林省文化馆主办的正规文学类期刊。文学是用语言塑造形象反映社会生活的一种语言艺术,是自觉、独立而又面向整个社会的艺术,是文化中极具强烈感染力的重要组成部分&…

【示例】MySQL-4类SQL语言-DDL-DML-DQL-DCL

前言 本文主要讲述MySQL中4中SQL语言的使用及各自特点。 SQL语言总共分四类:DDL、DML、DQL、DCL。 SQL-DDL | Data Definition Language 数据定义语言:用来定义/更改数据库对象(数据库、表、字段) 用途 | 操作数据库 # 查询所…

无人新零售引领的创新浪潮

无人新零售引领的创新浪潮 在数字化时代加速演进的背景下,无人新零售作为商业领域的一股新兴力量,正以其独特的高效性和便捷性重塑着传统的购物模式,开辟了一条充满创新潜力的发展道路。 依托人脸识别、物联网等尖端技术,无人新…

ELK-Kibana 部署

目录 一、在 node1 节点上操作 1.1.安装 Kibana 1.2.设置 Kibana 的主配置文件 1.3.启动 Kibana 服务 1.4.验证 Kibana 1.5.将 Apache 服务器的日志(访问的、错误的)添加到 ES 并通过 Kibana 显示 1.6. 浏览器访问 二、部署FilebeatELK&…

redis复习笔记08(小滴课堂)

案例实战需求之大数据下的用户画像标签去重 我们就简单的做到了去重了。 案例实战社交应用里面之关注、粉丝、共同好友案例 这就是我们set的一个应用。 案例实战之SortedSet用户积分实时榜单最佳实践 准备积分类对象: 我们加上构造方法和判断相等的equals和hascod…

Unity单个物体绑定多个相机在轨道上移动,录制不同角度视频

环境搭建 下载Cinemachine插件安装 打开包管理器 下载cinemachine插件 创建轨道 使用dolly track 创建轨道 右侧可以删减关键点,注意调整y坐标 创建cart 把前面的轨道拖到path中,注意这里的speed要设定不为0才会动 设置VItual Camera 根据需…

提升法律文书起草效率:AlphaGPT 助力律师快速生成诉讼和仲裁文件

法律文书起草对于法律专业人士而言是一项基础而关键的任务。无论是民事、刑事还是行政诉讼,以及仲裁案件,精确的法律文书撰写对于案件的成功至关重要。然而,这一过程往往既耗时又复杂,尤其是在处理复杂的案情和面对当事人难以理解…

美国G口服务器租用的应用领域

在当今数字化快速发展的时代,服务器成为了各行各业不可或缺的重要工具。其中,美国G口服务器以其高带宽、高性能的特点,在众多领域得到了广泛的应用。那么,美国G口服务器租用的应用领域究竟有哪些呢?接下来,本文将为您…

逆向案例二十一——遇到混淆怎么办

开始新的板块尝试,混淆了怎么办 网址:极简壁纸_海量电脑桌面壁纸美图_4K超高清_最潮壁纸网站 抓包抓到,好久没做解密了,奥里给干他!: 搜索关键字,打上断点,点击第二页。 _0x10a345…

ThreadPoolExecutor线程池解析

ThreadPoolExecutor线程池解析 一、ThreadPoolExecutor常见参数 jdk中Executors提供了几种常用的线程池,底层都是ThreadPoolExecutor。 public ThreadPoolExecutor(int corePoolSize,//核心线程数int maximumPoolSize,// 最大线程数long keepAliveTime,//非核心线程…

全面学习SpringCloud框架指南

要深入学习Spring Cloud框架,你需要系统地掌握其核心组件和概念,并了解如何在实际项目中应用这些知识。以下是一些关键的学习点和相应的学习内容: 一共分为10个模块包括: 1、微服务架构基础: 理解微服务架构的概念和优势。 学习单体架构向微服务架构演进的过程。 掌握…

项目存放在git上,在jenkins使用docker打包并推送到Ubuntu上运行

项目添加dockerfile 在需要打包的工程的根目录添加Dockerfile文件,文件内容: # 设置JAVA版本 FROM openjdk:8 # 指定存储卷,任何向/tmp写入的信息都不会记录到容器存储层 VOLUME /tmp# 拷贝运行JAR包 ARG JAR_FILE COPY ${JAR_FILE} app.jar…

48-基于腾讯云EKS的容器化部署实战

准备工作 在部署IAM应用之前,我们需要做以下准备工作: 开通腾讯云容器服务镜像仓库。安装并配置Docker。准备一个Kubernetes集群。 开通腾讯云容器服务镜像仓库 在Kubernetes集群中部署IAM应用,需要从镜像仓库下载指定的IAM镜像&#xff…

【ubuntu20.04】安装GeographicLib

下载地址 GeographicLib: Installing GeographicLib 我们是ubuntu20.04 ,所以下载第一个 GeographicLib-2.3.tar.gz 接着跟着官方步骤安装,会出错!!!!马的 官方错误示例:tar xfpz Geographi…

快速列表quicklist

目录 为什么使用快速列表quicklist 对比双向链表 对比压缩列表ziplist quicklist结构 节点结构quicklistNode quicklist 管理ziplist信息的结构quicklistEntry 迭代器结构quicklistIter quicklist的API 1.创建快速列表 2.创建快速列表节点 3.头插quicklistPushHead …

前端学习之路-项目实战(1)

每日吐槽:有一个奇怪的问题,怎么一眼看出一个求职者是否是培训班出来的,有的求职上写着,希望大家坦诚一点,but,你这艘诚实的泰坦尼克号终究还是撞上了社会阴暗面的冰山,OMG,不让包装…