GEE数据集——1986年—2022年加拿大全国烧毁面积综合数据 (NBAC)

 简介

加拿大全国烧毁面积综合数据 (NBAC)¶
全国烧毁面积综合数据 (NBAC) 是一个地理信息系统数据库和系统,用于计算自 1986 年以来每年全国范围内烧毁的森林面积。这些数据用于帮助估算加拿大的碳排放量。烧毁面积是通过评估一系列可用数据源确定的,这些数据源使用不同的技术绘制任何特定火灾的地图。该系统为每个烧毁地区选择最佳可用数据源,并建立一个全国综合图。

NBAC 是火灾监测、核算和报告系统(FireMARS)的一部分,该系统由加拿大自然资源部加拿大测绘与地球观测中心(前身为加拿大遥感中心)和加拿大林业局联合开发。火灾监测和报告系统最初是在加拿大航天局政府相关倡议计划的资助下,由火灾研究、森林碳核算和遥感方面的人员合作开发的。

NBAC 的数据来自- 加拿大自然资源部,以及 - 加拿大省级、地区级和公园机构。

NBAC 可用于景观尺度火灾影响的空间和时间分析。您可以在此处下载数据集

补充信息


NBAC 是 FireMARS 系统自 1986 年以来每年编制的国家产品,该系统跟踪森林火灾,用于年度碳排放估算,并帮助识别可能受到火灾干扰的国家森林资源调查地块。更多信息请参见 FireMARS 网站 (http://www.nrcan.gc.ca/forests/fire/13159) 和碳核算-干扰监测网站 (http://www.nrcan.gc.ca/forests/climate-change/13109)。

在使用这些数据进行制图活动和分析、研究、评估或展示时,请使用以下引文注明来源:

加拿大林务局。国家燃烧区综合数据 (NBAC)。加拿大自然资源部,加拿大林业局,北部林业中心,艾伯塔省埃德蒙顿。https://cwfis.cfs.nrcan.gc.ca/。

像素产品的详细信息

像素产品由 5 个文件组成:

JD.tif:烧毁区域的首次探测日
CL.tif:烧毁区域检测的置信度
BA.tif:烧毁面积,与计算出的烧毁像素比例相对应。
OB.tif:观测次数,即该月观测到该像元的次数。
xml:产品的元数据

像素属性汇总

AttributeUnitsData TypeNotes
Date of the first detection (JD)Day of the year (1-366)Float- 0: Not burned - 1-366: Day of first detection for burned pixel - -1: Not observed in month - -2: Not burnable (water, bare land, urban, snow/ice)
Confidence level (CL)0-100Float- 0: Low burn probability - 1-100: Increasing burn probability confidence - -1: Not observed in month - -2: Not burnable (water, bare land, urban, snow/ice)
Burned Area (BA)Square metersFloat- 0-N: Burned area within pixel cell - -1: Not observed in month - -2: Not burnable (water, bare land, urban, snow/ice)
Number of observations (OB)0-31Int16- 0-31: No-cloud observations in pixel - 0: Not observed - -2: Not burnable (water, bare land, urban, snow/ice)

代码

var nbac_raster8622 = ee.Image("projects/sat-io/open-datasets/CA_FOREST/NBAC/NBAC_MRB_1986_to_2022");
var nbac8622 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/nbac_1986_to_2022_20230630");
var nbac_1986_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1986_r9_20210810");
var nbac_1987_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1987_r9_20210810");
var nbac_1988_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1988_r9_20210810");
var nbac_1989_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1989_r9_20210810");
var nbac_1990_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1990_r9_20210810");
var nbac_1991_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1991_r9_20210810");
var nbac_1992_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1992_r9_20210810");
var nbac_1993_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1993_r9_20210810");
var nbac_1994_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1994_r9_20210810");
var nbac_1995_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1995_r9_20210810");
var nbac_1996_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1996_r9_20210810");
var nbac_1997_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1997_r9_20210810");
var nbac_1998_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1998_r9_20210810");
var nbac_1999_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_1999_r9_20210810");
var nbac_2000_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2000_r9_20210810");
var nbac_2001_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2001_r9_20210810");
var nbac_2002_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2002_r9_20210810");
var nbac_2003_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2003_r9_20210810");
var nbac_2004_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2004_r9_20210810");
var nbac_2005_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2005_r9_20210810");
var nbac_2006_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2006_r9_20210810");
var nbac_2007_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2007_r9_20210810");
var nbac_2008_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2008_r9_20210810");
var nbac_2009_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2009_r9_20210810");
var nbac_2010_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2010_r9_20210810");
var nbac_2011_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2011_r9_20210810");
var nbac_2012_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2012_r9_20210810");
var nbac_2013_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2013_r9_20210810");
var nbac_2014_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2014_r9_20210810");
var nbac_2015_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2015_r9_20210810");
var nbac_2016_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2016_r9_20210810");
var nbac_2017_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2017_r9_20210810");
var nbac_2018_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2018_r9_20210810");
var nbac_2019_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2019_r9_20210810");
var nbac_2020_r9_20210810 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2020_r9_20210810");
var nbac_2021_r9_20220624 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2021_r9_20220624");
var nbac_2022_r12_20230630 = ee.FeatureCollection("projects/sat-io/open-datasets/CA_FOREST/NBAC/YEARLY/nbac_2022_r12_20230630");//Setup basemaps
var snazzy = require("users/aazuspan/snazzy:styles");
snazzy.addStyle("https://snazzymaps.com/style/132/light-gray", "Grayscale");var palette = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b','#e377c2', '#7f7f7f', '#bcbd22', '#17becf', '#aec7e8', '#ffbb78','#98df8a', '#ff9896', '#c5b0d5', '#c49c94', '#f7b6d2', '#c7c7c7','#dbdb8d', '#9edae5', '#393b79', '#637939', '#8c6d31', '#843c39','#7b4173', '#5254a3', '#637939', '#8c6d31', '#bd9e39', '#8c6d31','#bd9e39', '#8c6d31', '#bd9e39', '#8c6d31', '#bd9e39', '#8c6d31'
];//Center the object
Map.setCenter(-97.31,56.71,4)Map.addLayer(nbac_raster8622,{min:1986,max:2022,palette:palette},'National Burned Area Raster Composite 1986-2022')
Map.addLayer(nbac8622,{},'National Burned Area Composite 1986-2022',false)

数据引用

Skakun, R.; Castilla, G.; Metsaranta, J.; Whitman, E.; Rodrigue, S.; Little, J.; Groenewegen, K.; Coyle, M. (2022). Extending the National Burned Area Composite Time Series of Wildfires in Canada. Remote Sensing, 14, 3050. DOI: https://doi.org/10.3390/rs14133050 Skakun, R.S.; Whitman, E.; Little, J.M.; and Parisien, M.-A. (2021). Area burned adjustments to historical wildland fires in Canada. Environmental Research Letters 16 064014. DOI: https://doi.org/10.1088/1748-9326/abfb2c Hall, R.J.; Skakun, R.S.; Metsaranta, J.M.; Landry, R.; Fraser, R.H.; Raymond, D.A.; Gartrell, J.M.; Decker, V. and Little, J.M. (2020). Generating annual estimates of forest fire disturbance in Canada: the National Burned Area Composite. International Journal of Wildland Fire. 10.1071/WF19201. DOI: https://doi.org/10.1071/WF19201

代码链接

https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:fire-monitoring-analysis/CA-NATIONAL-BURNED-AREA-COMPOSITE

License¶

Open Government Licence - Canada (Open Government Licence - Canada | Open Government - Government of Canada). When using these data for mapping activities and analysis, research, evaluation or display, please acknowledged the source using the following citation: Canadian Forest Service. National Burned Area Composite (NBAC). Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta. Canadian Wildland Fire Information System / Système canadien d'information sur les feux de végétation.

Created by: Natural Resources Canada,Canadian Wildland Fire Information System

Curated in GEE by : Samapriya Roy

Keywords: canada,burned area,forestry,forest fire,wildfire

Last updated in GEE: 2024-04-02

网址推荐

0代码在线构建地图应用

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/306178.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

废品回收小程序推动回收行业的发展趋势

回收在全球都是一个重要行业,它为全球的环保作出了重要贡献。 随着科技的不断发展创新,废品回收的方式也逐渐多样,全新的线上回收小程序也逐渐出现在大众的生活中,在当下的手机时代,线上回收也为大众提供了更加便利的…

vs2022启动cmake项目(qt+c++)

1.本工程,如图,1个cmakelist.txt3个文件 2.启动vs 3.选择文件夹 4.进入这个页面,就说明配置没问题 5.启动 6.最后会自己生成其他文件

本地MinIO存储服务通过Java程序结合cpolar实现远程连接上传文件

文章目录 前言1. 创建Buckets和Access Keys2. Linux 安装Cpolar3. 创建连接MinIO服务公网地址4. 远程调用MinIO服务小结5. 固定连接TCP公网地址6. 固定地址连接测试 前言 MinIO是一款高性能、分布式的对象存储系统,它可以100%的运行在标准硬件上,即X86等…

idea 卡怎么办

设置内存大小 清缓存重启 idea显示内存全用情况 右下角

适配器模式类图与代码

某软件系统中,已设计并实现了用于显示地址信息的类Address,现要求提供基于Dutch语言的地址信息显示接口。为了实现该要求并考虑到以后可能还会出现新的语言的接口,决定采用适配器(Adapter)模式实现该要求,得到如图7.9所示的类图。 【Java代码…

Docker操作容器打包(commit),压缩(save),挂载(load)

文章目录 前言一、容器打包二、将镜像压缩成tar包三、将tar包挂载为镜像结束 前言 将容器打包成镜像时,你正在将应用程序及其所有依赖项、文件和配置文件捆绑到一个可移植的、独立的单元中。这样做可以确保您的应用程序在不同环境中具有一致的运行方式,…

ASUS华硕ROG幻16Air笔记本电脑GU605M原装出厂Win11系统工厂包下载,带有ASUSRecovery一键重置还原

适用型号:GU605MI、GU605MY、GU605MZ、GU605MV、GU605MU 链接:https://pan.baidu.com/s/1YBmZZbTKpIu883jYCS9KfA?pwd9jd4 提取码:9jd4 华硕原厂Windows11系统带有ASUS RECOVERY恢复功能、自带所有驱动、出厂主题壁纸、系统属性联机支持…

Linux磁盘空间问题排查记录

问题 pip install时总提示OSError(28, ‘No space left on device’)或者ERROR: Could not install packages due to an OSError: [Errno 28] No space left on device 分析 很明显,磁盘空间不足。尝试了以下方法,没有解决问题: 清理pip缓…

【论文阅读笔记】Attention Is All You Need

论文小结 这是17年的老论文了,Transformer的出处,刚发布时的应用场景是文字翻译。BLUE是机器翻译任务中常用的一个衡量标准。 在此论文之前,序列翻译的主导模型是RNN或者使用编解码器结构的CNN。本文提出的Transformer结构不需要使用循环和卷…

左总视角:千视以NDI 6重塑实时流媒体传输格局

欧洲当地时间4月3日下午1点,NDI 官方宣布了NDI 6.0版本的正式上线。凭借原生HDR和10比特/12比特色彩支持,NDI 6将NDI源的画质处理推向了一个新的巅峰,成为了高画质行业内容创作者的首选。此外,跨互联网现在也可以通过内嵌到SDK组件…

sysbench MySQL性能测试

目录 1. QPS&&TPS 1.1 数据库启动到现在的运行时间(秒) 1.2 查询量 1.3 status命令直接显示出QPS 1.4 每秒输出数据库状态(累加) 2. sysbench 测试工具 3. OLTP MySQL测试 3.1 普通参数 3.2 支持的lua脚本 3.3 脚本参数 3.4 测试数据准备 3.5 进行测试 3.…

蓝桥杯-数组切分

问题描述 已知一个长度为 N 的数组: A1,A2,A3,...AN 恰好是1~ N的一个排列。现 在要求你将 4 数组切分成若干个 (最少一个,最多 N 个)连续的子数组,并且 每个子数组中包含的整数恰好可以组成一段连续的自然数。 例如对于 4 1,3,2,4,一共有 5 种切分方法: 1324:每个单独的数显然…

Java 中文官方教程 2022 版(四十六)

原文&#xff1a;docs.oracle.com/javase/tutorial/reallybigindex.html 定义简单的通用类型 原文&#xff1a;docs.oracle.com/javase/tutorial/extra/generics/simple.html 这里是包java.util中接口List和Iterator的定义的一个小节选&#xff1a; public interface List <…

盲人独立购物新纪元:一款实时“障碍物识别”应用助力超市之行

作为一名资深记者&#xff0c;我始终热衷于探寻科技如何助力特殊群体跨越生活挑战的创新实践。近日&#xff0c;一款名为蝙蝠避障专为盲人设计的辅助应用走进了我的视野&#xff0c;它凭借实时障碍物识别功能&#xff0c;助力视障人士独立前往超市购物&#xff0c;悄然改变了他…

【JAVA基础篇教学】第五篇:Java面向对象编程:类、对象、继承、多态

博主打算从0-1讲解下java基础教学&#xff0c;今天教学第五篇&#xff1a;Java面向对象编程&#xff1a;类、对象、继承、多态。 在Java中&#xff0c;面向对象编程是一种常用的编程范式&#xff0c;它以类和对象为核心&#xff0c;通过继承和多态等机制实现代码的复用和灵活…

十四款大型语言模型在《街头霸王III》中一决雌雄

上周在旧金山举办的Mistral AI黑客马拉松上&#xff0c;开发出了一款基于经典街机游戏《街头霸王III》的人工智能&#xff08;AI&#xff09;基准测试。这款名为“AI Street Fighter III”的开源基准测试由Stan Girard和Quivr Brain开发&#xff0c;游戏在模拟器中运行&#xf…

【C++】——list的介绍及使用 模拟实现

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 文章目录 前言 一、list的介绍及使用 1.1 list的介绍 1.2 list的使用 1.2.1 list的构造 1.2.2 list iterator的使用 1.2.3 list capacity 1.2.4 list element access 1.…

数据结构基础 ——数组VS链表(二)

一、数组 数组对应的英文是array&#xff0c;是有限个相同类型的变量所组成的有序集合&#xff0c;数组中的每一个变量称为元素。数组是最简单、最常用的数据结构。 数组存储格式&#xff1a; 在Python语言中&#xff0c;并没有直接使用数组这个概念&#xff0c;而是使用列表(…

Transformer模型-encoder编码器,padding填充,source mask填充掩码的简明介绍

今天介绍transformer模型的encoder编码器&#xff0c;padding填充&#xff0c;source mask填充掩码 背景 encoder编码器层是对之前文章中提到的子层的封装。它接收位置嵌入的序列&#xff0c;并将其通过多头注意力机制和位置感知前馈网络。在每个子层之后&#xff0c;它执行残差…

SQLite数据库文件格式(十五)

返回&#xff1a;SQLite—系列文章目录 上一篇:SQLite 4.9的虚拟表机制(十四) 下一篇&#xff1a;SQLite超详细的编译时选项&#xff08;十六&#xff09; ► 目录 本文档描述和定义磁盘上的数据库文件 自 SQLite 以来所有版本使用的格式 版本 3.0.0 &#xff08;2004-06-18…