【深度学习】环境搭建ubuntu22.04

清华官网的conda源
https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
安装torch
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
2.2.2
在这里插入图片描述
conda install 指引看这里:
ref:https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas
invidia toolkit的指引在这里,看起来,driver和toolkit合二为一了,一步到位。
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&target_type=deb_network
cudann安装:https://docs.nvidia.com/deeplearning/cudnn/installation/linux.html

报错:https://forums.developer.nvidia.com/t/verify-cudnn-install-failed/167220
(base) justin@justin-System-Product-Name:/usr/src/cudnn_samples_v9/mnistCUDNN$ sudo make
CUDA_VERSION is 12040
Linking agains cublasLt = true
CUDA VERSION: 12040
TARGET ARCH: x86_64
HOST_ARCH: x86_64
TARGET OS: linux
SMS: 50 53 60 61 62 70 72 75 80 86 87 90
test.c:1:10: fatal error: FreeImage.h: No such file or directory
1 | #include “FreeImage.h”

解决方案:https://forums.developer.nvidia.com/t/verify-cudnn-install-failed/167220/4

cudnn测试通过,它被安装在了src下。cp一份sample到home下:


(base) justin@justin-System-Product-Name:~/cudnn_samples_v9/mnistCUDNN$ ./mnistCUDNN
Executing: mnistCUDNN
cudnnGetVersion() : 90000 , CUDNN_VERSION from cudnn.h : 90000 (9.0.0)
Host compiler version : GCC 11.4.0There are 1 CUDA capable devices on your machine :
device 0 : sms 128  Capabilities 8.9, SmClock 2520.0 Mhz, MemSize (Mb) 24188, MemClock 10501.0 Mhz, Ecc=0, boardGroupID=0
Using device 0Testing single precision
Loading binary file data/conv1.bin
Loading binary file data/conv1.bias.bin
Loading binary file data/conv2.bin
Loading binary file data/conv2.bias.bin
Loading binary file data/ip1.bin
Loading binary file data/ip1.bias.bin
Loading binary file data/ip2.bin
Loading binary file data/ip2.bias.bin
Loading image data/one_28x28.pgm
Performing forward propagation ...
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.015360 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.017408 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.037728 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.106496 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.242464 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.287936 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 128848 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.028672 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.045024 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.104768 time requiring 128848 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.116736 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.136192 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.209152 time requiring 2450080 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Resulting weights from Softmax:
0.0000000 0.9999399 0.0000000 0.0000000 0.0000561 0.0000000 0.0000012 0.0000017 0.0000010 0.0000000
Loading image data/three_28x28.pgm
Performing forward propagation ...
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.011488 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.013312 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.014336 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.024576 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.024576 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.028512 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 128848 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.023552 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.026624 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.029600 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.037536 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.044032 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.049152 time requiring 128848 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Resulting weights from Softmax:
0.0000000 0.0000000 0.0000000 0.9999288 0.0000000 0.0000711 0.0000000 0.0000000 0.0000000 0.0000000
Loading image data/five_28x28.pgm
Performing forward propagation ...
Resulting weights from Softmax:
0.0000000 0.0000008 0.0000000 0.0000002 0.0000000 0.9999820 0.0000154 0.0000000 0.0000012 0.0000006Result of classification: 1 3 5Test passed!Testing half precision (math in single precision)
Loading binary file data/conv1.bin
Loading binary file data/conv1.bias.bin
Loading binary file data/conv2.bin
Loading binary file data/conv2.bias.bin
Loading binary file data/ip1.bin
Loading binary file data/ip1.bias.bin
Loading binary file data/ip2.bin
Loading binary file data/ip2.bias.bin
Loading image data/one_28x28.pgm
Performing forward propagation ...
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.008096 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.011104 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.011264 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.030464 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.030720 time requiring 2057744 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.031488 time requiring 178432 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 2450080 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.037696 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.041056 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.048128 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.053248 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.055296 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.057344 time requiring 4656640 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Resulting weights from Softmax:
0.0000001 1.0000000 0.0000001 0.0000000 0.0000563 0.0000001 0.0000012 0.0000017 0.0000010 0.0000001
Loading image data/three_28x28.pgm
Performing forward propagation ...
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.010240 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.012544 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.014336 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.025600 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.026656 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.032448 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 2450080 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.022368 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.027648 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.030720 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.034816 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.037984 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.041984 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Resulting weights from Softmax:
0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000714 0.0000000 0.0000000 0.0000000 0.0000000
Loading image data/five_28x28.pgm
Performing forward propagation ...
Resulting weights from Softmax:
0.0000000 0.0000008 0.0000000 0.0000002 0.0000000 1.0000000 0.0000154 0.0000000 0.0000012 0.0000006Result of classification: 1 3 5Test passed!

(base) justin@justin-System-Product-Name:/usr/src$ locate cudnn_version.h
/usr/include/cudnn_version.h
(base) justin@justin-System-Product-Name:/usr/src$

ref:https://blog.csdn.net/qq_42406643/article/details/109545766

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/306222.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TechTool Pro for Mac v19.0.3中文激活版 硬件监测和系统维护工具

TechTool Pro for Mac是一款专为Mac用户设计的强大系统维护和故障排除工具。它凭借全面的功能、高效的性能以及友好的操作界面,赢得了广大用户的信赖和好评。 软件下载:TechTool Pro for Mac v19.0.3中文激活版 作为一款专业的磁盘和系统维护工具&#x…

SNRO 编号范围对象管控,唯一ID

事务代码:SNRO 代码引用: DATA: MAXTID TYPE I,NEWNO TYPE CHAR8. CALL FUNCTION NUMBER_RANGE_ENQUEUE EXPORTING OBJECT ZQC57 EXCEPTIONS FOREIGN_LOCK 1 OBJECT_NOT_FOUND 2 SYSTEM_FAILURE 3 OTHERS …

Docker学习笔记(二):在Linux中部署Docker(Centos7下安装docker、环境配置,以及镜像简单使用)

一、前言 记录时间 [2024-4-6] 前置文章:Docker学习笔记(一):入门篇,Docker概述、基本组成等,对Docker有一个初步的认识 在上文中,笔者进行了Docker概述,介绍其历史、优势、作用&am…

npm创建Vue3项目

npm创建Vue3项目 1 创建Vue项目说明 2 安装3 运行 1 创建Vue项目 创建最新版的Vue项目,已经不推荐使用CLI构建方式了。参考如下即可。 npm create vuelatest如果发现一直动不了,切换网络试一下,个人热点尝试一下。 按下图的选项按需引入自…

Nacos快速入门(windows)

Nacos是 Dynamic Naming and Configuration Service的简称。Nacos能快速实现动态服务发现、服务配置、服务元数据及流量管理 下载启动Nacos Nacos下载启动(windows) 以下两种随意选择一种即可从github上下载源码方式启动 git clone https://github.com…

【pycharm】在debug循环时,如何快速debug到指定循环次数

【pycharm】在debug循环时,如何快速debug到指定循环次数 【先赞后看养成习惯】求关注收藏点赞😀 在 PyCharm 中,可以使用条件断点来实现在特定循环次数后停止调试。这可以通过在断点处右键单击,然后选择 “Add Breakpoint” -&g…

Jenkins+AWS CodeCommit(git)

问题 需要使用Jenkins搭建一套CI流,即通过git代码托管拉取代码,构建自定分支的代码,构建出jar,并进一步构建出docker镜像,并推送到docker私有库中。 准备 AWS云准备 这里假设已经在CodeCommit已经存在私有git代码仓…

Macbook M1 Pro使用brew安装Docker并安装Nacos【超详细图解】

目录 一、安装 Docker 二、修改 Docker 镜像地址 三、拉取镜像-举例 Nacos 1.拉取镜像 2.查看本地镜像 3.删除镜像 四、启动容器 1.启动 Nacos 容器: I.方式一【推荐】 II.方式二【懒人推荐】 2.访问 Nacos Web 控制台 3.进入容器和退出容器 五、配置…

【Java】JDK1.8 HashMap源码,put源码详细讲解

📝个人主页:哈__ 期待您的关注 在Java中,HashMap结构是被经常使用的,在面试当中也是经常会被问到的。这篇文章我给大家分享一下我对于HashMap结构源码的理解。 HashMap的存储与一般的数组不同,HashMap的每一个元素存…

一文读懂Partisia Blockchain,被严重低估的隐私区块链生态

在今年3月,隐私公链Partisia Blockchain迎来了重要的进展,该生态通证 $MPC上线了交易所,目前$MPC通证可以在Kucoin、Gate、BitMart、Bitfinex、Bitture等平台交易,并将在不久后上线MEXC平台。 在上个月上线市场至今,MP…

股票价格预测 | Python使用GAN预测股票价格

文章目录 效果一览文章概述代码设计效果一览 文章概述 生成对抗网络(GAN)是一种强大的机器学习模型,用于生成以假乱真的数据。然而,使用GAN来预测股票价格可能会面临以下挑战: 数据可用性:GAN需要大量的数据进行训练,以便生成准确的输出。对于股票价格预测,历史股票价…

单例19c RMAN数据迁移方案

一、环境说明 源库 目标库 IP 192.168.37.200 192.168.37.202 系统版本 RedHat 7.9 RedHat 7.9 数据库版本 19.3.0.0.0 19.3.0.0.0 SID beg beg hostname beg rman 数据量 1353M 说明:源库已经创建数据库实例,并且存在用户kk和他创建的表空间…

企业搭建分销商城系统要注意什么?

分销商城系统是一种专门设计出来的电商平台,旨在通过构建多层级的分销网络体系,帮助企业将产品或服务高效地推广和销售至终端消费者。那么,搭建分销商城系统要注意什么呢?我们从优势、功能、玩法来进行分析。 一、分销商城有哪些…

dPET论文笔记

PBPK论文笔记 题目:Self-supervised Learning for Physiologically-Based Pharmacokinetic Modeling in Dynamic PET 摘要 动态正电子发射断层扫描成像 (dPET) 提供示踪剂的时间分辨图像。从 dPET 中提取的时间活动曲线 (TAC&a…

Java入门-数组

数组 什么是数组 数组( array )是一种最简单的复合数据类型,它是有序数据的集合,数组中的每个元素具有相同的数据类型,可以用一个统一的数组名和不同的下标来确定数组中唯一的元素。 数组的内存结构是分配一系列内存大小相等的连续空间。 …

SpringCloudAlibabaSeate处理分布式事务

SpringCloudAlibabaSeate处理分布式事务 1、部分面试题 微服务boot/cloud做的项目,你不可能只有一个数据库吧?那么多个数据库之间如何处理分布式事务的? 一个场景:在订单支付成功后,交易中心会调用订单中心的服务把订…

15. 【Android教程】按钮 Button/ImageButton

在前面两章我们讲了 TextView,它是一个纯输出的控件;而 EditText 在 TextView 基础之上加入了简单的输入功能;今天要讲的 Button 是一个和用户互动感很强的控件,从今往后不再是单纯的文本展示,我们可以通过 TextView、…

2024年第五届计算机视觉与信息技术国际会议(CVIT 2024)即将召开!

2024年第五届计算机视觉与信息技术国际会议(CVIT 2024)将于2024年8月16-18日在北京举行。CVIT 2024由北方工业大学主办,国内外的专家学者将齐聚一堂,共同分享最新的技术突破、研究方法和应用案例,共同推动计算机视觉与…

选择排序解读

在计算机科学中,排序算法是一种将数据元素按照某种顺序排列的算法。今天,我们要探讨的是选择排序(Selection Sort),这是一种简单直观的排序方法,通过不断选择剩余元素中的最小(或最大&#xff0…

MySOL之旅--------MySQL数据库基础( 3 )

本篇碎碎念:要相信啊,胜利就在前方,要是因为一点小事就停滞不前,可能你也不适合获取胜利,成功的路上会伴有泥石,但是走到最后,你会发现身上的泥泞皆是荣耀的勋章! 今日份励志文案: 凡是发生皆有利于我 目录 查询(select) 1.全列查询 2.指定列查询 3.查询字段为表达式 ​编…