字节对编码 (BPE):提升语言处理的效率和有效性

原文地址:byte-pair-encoding-bpe-bridging-efficiency-and-effectiveness-in-language-processing

2024 年 4 月 12 日

介绍

在快速发展的自然语言处理 (NLP) 领域,对人类语言高效解析和理解的追求带来了重大创新。字节对编码(BPE)作为一种关键技术脱颖而出,特别是在机器学习和语言模型训练中。本文深入探讨了 BPE 的机制、其实际应用及其对 NLP 领域的深远影响。

1

技术背景

字节对编码(BPE)是一种数据压缩技术,最初是为压缩文本数据而开发的。但在自然语言处理(NLP)中,它仍被广泛用于标记化。在 NLP 中,BPE 被用于将文本分割成子词单元,这有利于处理词汇量和语言模型中的词汇量不足问题。

以下是 BPE 在 NLP 中的工作原理:

  1. 从词汇开始: 最初,词汇表由数据集中的每个独特字符或单词及其频率组成。
  2. 迭代合并词对: 算法会反复查找文本中出现频率最高的一对相邻符号(或字符),并将它们合并为一个新符号。然后将这个新符号添加到词汇表中。
  3. 重复直到达到标准:这一过程一直持续到预定的合并次数或达到所需的词汇量为止。
  4. 标记文本: 合并完成后,根据最终的合并集将文本标记为子词。这些子词可以是单个字符,也可以是完整的单词,具体取决于它们在文本中的出现频率。

BPE 的优势在于,它可以通过创建有效代表常见字符序列或单词的词汇来适应数据集。这使得它特别适用于词汇量较大的语言或具有专业术语的建模领域。

在机器学习中,尤其是在训练 GPT(生成预训练转换器)等语言模型时,BPE 有助于在不丢失重要信息的情况下缩小输入表示的大小。它平衡了字符级和单词级表示,使模型能更有效地处理罕见单词或名称。

了解 BPE 的机制

字节对编码(Byte Pair Encoding)最初是为数据压缩而设计的,现在被巧妙地重新用于 NLP 中的文本标记化。BPE 的核心算法是迭代合并数据集中最常见的字符对或序列,直到达到指定的词汇量。这一过程可将原始文本转化为子词单位,即可代表更复杂单词或短语的构件。BPE 的亮点在于其简单性和适应性;它能动态构建词汇,反映文本中序列的实际用法和频率,从而使模型适合其训练语料。

BPE 在 NLP 中的实际应用

BPE 在 NLP 中的应用主要是由于它能够平衡粒度和计算效率。在训练 GPT(生成式预训练转换器)等语言模型时,BPE 通过将文本分割成易于管理、有意义的单元,同时又不过分简化语言结构,发挥了至关重要的作用。这种分割使模型能够处理许多术语,包括罕见词和特定领域的行话,从而增强其预测能力和语言覆盖范围。

此外,BPE 的影响还超出了单个词的处理,影响到模型的整体性能。通过减少词汇量,从而降低模型的复杂性,BPE 可以缩短训练时间,降低内存要求。但是,这种效率并不是以有效性为代价的;BPE 使模型能够更好地理解语言的细微差别,捕捉文本中蕴含的形态和语义微妙之处。

BPE 对 NLP 的影响

字节对编码对 NLP 的影响是深远而多方面的。通过为词汇问题提供可扩展的解决方案,BPE 在推动最先进的语言建模方面发挥了重要作用。它为开发大规模、高性能的模型铺平了道路,以便理解和生成跨语言和跨领域的类人文本。

此外,BPE 还实现了先进 NLP 技术的普及。它能够利用有限的计算资源高效处理文本,这意味着更多的组织和个人可以利用尖端的语言模型进行各种应用,从自动翻译服务到上下文感知聊天机器人。

代码

使用字节对编码(BPE)实现一个完整的系统,包括合成数据集生成、特征工程、超参数调整、交叉验证,以及在单个代码块中进行结果解释和绘图,需要大量代码。不过,我将提供一个涉及这些方面的简化版本。

下面的 Python 代码演示了在合成数据集上的简化 BPE 流程,以及基本的模型训练和评估:

import numpy as np
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
from collections import Counter, defaultdict
# Synthetic dataset generation
words = ["hello", "world", "helloo", "word", "test", "testing", "tester"]
vocab = Counter(" ".join(words))
# BPE algorithm
def get_stats(vocab):pairs = defaultdict(int)for word, freq in vocab.items():symbols = word.split()for i in range(len(symbols)-1):pairs[symbols[i], symbols[i+1]] += freqreturn pairs
def merge_vocab(pair, v_in):v_out = {}bigram = ' '.join(pair)replacer = ''.join(pair)for word in v_in:w_out = word.replace(bigram, replacer)v_out[w_out] = v_in[word]return v_out
num_merges = 10
for i in range(num_merges):pairs = get_stats(vocab)if not pairs:breakbest = max(pairs, key=pairs.get)vocab = merge_vocab(best, vocab)
# Feature engineering: Encoding words as counts of BPE tokens
token_counts = Counter()
for word in words:for token in vocab:if token in word:token_counts[token] += 1
X = np.array([token_counts[word] for word in words])
y = np.array([len(word) > 5 for word in words])  # Simple target variable
# Data splitting
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Model training and hyperparameter tuning
model = LogisticRegression(C=1.0)  # Simple hyperparameter
model.fit(X_train.reshape(-1, 1), y_train)
# Cross-validation
scores = cross_val_score(model, X.reshape(-1, 1), y, cv=2)
print(f"Cross-validation scores: {scores}")
# Model evaluation
accuracy = model.score(X_test.reshape(-1, 1), y_test)
print(f"Test accuracy: {accuracy}")
# Plotting results
plt.scatter(X, y, color='blue', label='data')
plt.plot(X, model.predict(X.reshape(-1, 1)), color='red', label='model')
plt.xlabel('BPE token counts')
plt.ylabel('Word length > 5')
plt.title('BPE Tokenization and Logistic Regression')
plt.legend()
plt.show()
# Interpretation
print("The model's performance and the cross-validation scores indicate the effectiveness of BPE tokenization in feature representation.")

该代码包括

  • 用一小组单词生成合成数据。
  • 简单的 BPE 实现,迭代合并最频繁的字符对。
  • 基本特征工程,其中的特征是单词中 BPE 标记的计数。
  • 预测单词长度是否超过 5 的逻辑回归模型是一项占位任务。
  • 交叉验证和准确度评估。
  • 可视化模型与数据拟合的曲线图。

本示例经过高度简化,展示了如何将 BPE 集成到机器学习工作流程中。在现实世界中,你需要更大的数据集、更复杂的特征工程、广泛的超参数调整以及全面的模型评估。

2

上图是合成数据集的一个样本,显示了单词及其各自的长度。这种可视化方式有助于我们了解所处理数据的基本结构。

3

图中显示的两个数据点代表逻辑回归模型的结果,X 轴为 BPE 标记计数,Y 轴为二元目标变量(词长 > 5)。x 轴上的最小值在零附近,这可能表明 BPE 标记计数已被归一化或计数很低,这可能是由于词汇量很小或标记不常见造成的。

y 轴为二进制,长度为 5 或 5 以下的词为 0,长度为 5 以上的词为 1。图中显示了一个 y 值为 0 的数据点和一个 y 值为 1 的数据点,两者的 x 值均约为 0。代表逻辑回归模型的红线不明显,这可能是由于缩放问题或与其中一个坐标轴重叠。

结论

字节对编码是 NLP 效率和效果的完美结合。通过对文本标记化的创新方法,BPE 提高了语言模型的性能,并扩大了它们在语言和计算领域的适用性。在我们继续探索语言和技术前沿的过程中,BPE 证明了推动 NLP 进步的独创性和适应性。它的持续贡献无疑将塑造人机交流的未来,使其成为不断扩展的语言处理工具包中不可或缺的工具。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/308650.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis中的集群(九)

集群 消息 集群中的各个节点通过发送和接收消息(message)来进行通信,我们称发送消息的节点为发送者(sender),接收消息 的节点成为接收者,如图所示。节点发送的消息主要有以下五种: 1.MEET消息:当发送者接到客户端发送的CLUSTER MEET命令时&#xff0c…

STM32-模数转化器

ADC(Analog-to-Digital Converter) 指模数转换器。是指将连续变化的模拟信号转换 为离散的数字信号的器件。 ADC相关参数说明: 分辨率: 分辨率以二进制(或十进制)数的位数来表示,一般有 8 位、10 位、12 位、16 位…

C++11 设计模式0. 设计模式的基本概念,设计模式的准则,如何学习设计模式,24种设计模式的分为3大类

一 设计模式的基本概念: 模式:指事物的标准样式 或者 理解成 针对特定问题的可重用解决方案。 设计模式,是在特定问题发生时的可重用解决方案。 设计模式一般用于大型项目中。 大型项目中,设计模式保证所设计的模块之间代码的灵…

【蓝桥杯】2024年第15届真题题目

试题 A: 握手问题 本题总分: 5 分 【问题描述】 小蓝组织了一场算法交流会议,总共有 50 人参加了本次会议。在会议上, 大家进行了握手交流。按照惯例他们每个人都要与除自己以外的其他所有人进 行一次握手(且仅有一次&a…

多线程代码案例之阻塞队列

目录 1.生产者消费者模型 2.使用标准库中的阻塞队列 3.模拟实现阻塞队列 在介绍阻塞队列之前,会先介绍一些前置知识,像队列:有普通队列、优先级队列、阻塞队列、和消息队列。前面两个是线程不安全的,而后面两个是线程安全的。本…

学生管理系统控制台版(java)

首先得先写个Student类,用来存放学生信息 public class Student {private String id;private String name;private int age;private String address;public Student() {}public Student(String id, String name, int age, String address) {this.id id;this.name…

2024年4月8日腾讯云故障复盘及情况说明

2024年4月8日15点23分,腾讯云团队收到告警信息,云API服务处于异常状态;随即在腾讯云工单、售后服务群以及微博等渠道开始大量出现腾讯云控制台登录不上的客户反馈。 经过故障定位发现,客户登录不上控制台正是由云API异常所导致。云…

极狐GitLab 如何在 helm 中恢复数据

本文作者:徐晓伟 GitLab 是一个全球知名的一体化 DevOps 平台,很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版,专门为中国程序员服务。可以一键式部署极狐GitLab。 本文主要讲述了如何在极狐GitLab …

关于部署ELK和EFLK的相关知识

文章目录 一、ELK日志分析系统1、ELK简介1.2 ElasticSearch1.3 Logstash1.4 Kibana(展示数据可视化界面)1.5 Filebeat 2、使用ELK的原因3、完整日志系统的基本特征4、ELK的工作原理 二、部署ELK日志分析系统1、服务器配置2、关闭防火墙3、ELK ElasticSea…

李廉洋;4.12现货黄金,美原油最新走势分析及策略。

现货黄金在美盘末将历史新高刷至2377美元/盎司。美国3月份PPI指数较上年同期上升2.1%,为11个月来的最高增幅,这份数据加之此前火爆的CPI指数,为美联储实现2%目标所面临的坎坷之路奠定了基础。不过,PPI报告中的细节让担心通胀再度加…

Python快速获取编程问题答案的方法库之howdoi使用详解

概要 howdoi是一个命令行工具,它提供了一种快速获取编程问题答案的方法,通过搜索和抓取Stack Overflow等网站的内容,直接在终端中显示编程问题的解决方案。 安装 通过pip可以轻松安装howdoi: pip install howdoi特性 快速访问编程解决方案:无需手动浏览Stack Overflow。…

ThingsBoard通过服务端获取客户端属性或者共享属性

MQTT基础 客户端 MQTT连接 通过服务端获取属性值 案例 1、首先需要创建整个设备的信息,并复制访问令牌 ​2、通过工具MQTTX连接上对应的Topic 3、测试链接是否成功 4、通过服务端获取属性值 5、在客户端查看对应的客户端属性或者共享属性的key 6、查看整个…

ELK 日志分析系统

目录 一. ELK 相关知识 1. ELK 的概念与组件 1.1 ElasticSearch: 1.2 Kibana: 1.3 Logstash: 可以添加的其它组件: Filebeat: 缓存/消息队列(redis、kafka、RabbitMQ等): Flu…

css文本属性

css常用文本属性汇总 属性描述color设置文本颜色text-align设置水平对齐方式text-decoration装饰文本text-indent设置缩进line-height设置行间距 设置文本颜色 color属性 属性值: 1.已定义的属性值,如red,green。 2.十六进制&#xff1…

MYSQL08_页的概述、内部结构、文件头、文件尾、最大最小记录、页目录、区段表

文章目录 ①. 页的概述、大小②. 页的内部结构③. 第一部分 - 文件头④. 第一部分 - 文件尾⑤. 第二部分 - 空闲、用户记录、最大最小⑥. 第三部分 - 页目录⑦. 第三部分 - 页面头部⑧. 从数据页角度看B树⑨. 区、段和表、碎片区 ①. 页的概述、大小 ①. 数据库的存储结构&…

计算机服务器中了360后缀勒索病毒怎么办?360后缀勒索病毒解密步骤

网络技术的不断应用与发展,为企业的生产运营提供了极大便利,利用网络可以开展各项工作业务,可以大大提高企业的生产效率,然而,网络是一把双刃剑,在为企业提供便利的同时,也为企业的数据安全带来…

【C 数据结构】单链表

文章目录 【 1. 基本原理 】1.1 链表的节点1.2 头指针、头节点、首元节点 【 2. 链表的创建 】2.0 创建1个空链表(仅有头节点)2.1 创建单链表(头插入法)*2.2 创建单链表(尾插入法) 【 3. 链表插入元素 】【…

下载好了annaconda,但是在创建一个新的Conda虚拟环境报错

文章目录 问题描述:解决方案1.生成一个配置文件 问题总结 问题描述: ProxyError(MaxRetryError(“HTTPSConnectionPool(host‘repo.anaconda.com’, port443): Max retries exceeded with url: /pkgs/pro/win-64/repodata.json.bz2 (Caused by ProxyErr…

【深度学习实战(1)】如何使用argparse模块设置自己的训练参数

一、argparse模块用法 1、argparse是一个python模块,用途是:命令行选项、参数和子命令的解释。 2、argparse库下载:pip install argparse 3、使用步骤: 导入argparse模块,并创建解释器 添加所需参数 解析参数 二、…

Ubuntu去除烦人的顶部【活动】按钮

文章目录 一、需求说明二、打开 extensions 网站三、安装 GNOME Shell 插件四、安装本地连接器五、安装 Hide Activities Button 插件六、最终效果七、卸载本地连接器命令参考 本文所使用的 Ubuntu 系统版本是 Ubuntu 22.04 ! 一、需求说明 使用 Ubuntu 的过程中,屏…