Linux网络基础 (二) ——(IP、MAC、端口号、TCPUDP协议、网络字节序)

文章目录

  • IP 地址
    • 基本概念
    • 源IP地址 & 目的IP地址
  • MAC 地址
    • 基本概念
    • 源MAC地址 & 目的MAC地址
  • 端口号
    • 基本概念
    • 源端口号 & 目的端口号
  • TCP & UDP 协议
    • 基本概念
    • TCP 与 UDP 的抉择
  • 网络字节序
    • 大端、小端字节序

🎖  博主的CSDN主页:Ryan.Alaskan Malamute
📜 博主的代码仓库主页 [ Gitee ]:@ryanala      [GitHub]: Ryan-Ala

IP 地址

基本概念

  • 在 TCP/IP 网络通信时,为了保证能正常通信,每个设备都需要配置正确的 IP 地址,否则无法实现正常的通信。IP 地址(IPv4 地址)由 32 位正整数来表示,IP 地址在计算机是以二进制的方式处理的。

  • IP地址采用点分十进制的标记方式,将 32 位 IP 地址以每 8 位为组,共分为 4 组,每组以「.」隔开,再将每组转换成十进制。例如:192.168.42.137

  • IP 地址最大值也就是 232 = 4294967296 ,即最大允许 43 亿台计算机连接到网络。但是以现在的网络的发展,通信设备的增加,IPv4 的地址是完全不够用的。但 IP 地址并不是根据主机台数来配置的,而是以网卡来配置的。服务器、路由器等设备都是有 2 个以上的网卡,也就是它们会有 2 个以上的 IP 地址,所以是不可能让43亿台计算机全部联网。

那么如何解决这个问题?

  1. 动态分配
    使用 动态分配 IP 地址:就是当有设备联网的使用分配一个 IP 地址给当前设备,如果当前设备不联网了,那么就不分配。但是这种方案是治标不治本的;
  2. NAT机制
    使用 NAT 机制:把 IP 分为 外网 IP内网 IP,用一个 外网 IP 代替 N 个内网 IP。

    举个例子
    在送快递时,收货地址填写学校,而学校里有很多人,每个人用姓名和手机号区分。那么网络也是如此,进入内网 IP 后则是使用 端口号 区分。

  3. 使用IPv6
    使用能够表示更多IP地址的IPv6 解决这个问题,这里不再过多展开

源IP地址 & 目的IP地址

在网络编程中不同主机间进行进程通信需要有IP地址分为源IP地址目的IP地址

  • 源IP地址: 表示该条信息来源于哪个机器。
  • 目的IP地址:表示该条信息去往于哪个进程。

在这里插入图片描述

  以太网上的每台计算机都有一个唯一的IP地址,假如一台主机上的数据要传输到另一台主机,那么发送信息的主机IP就是源IP地址,而接收这条信息的对端主机的IP地址就为目的IP地址。
  但网络通信是极其复杂的,在信息的交互过程中仅仅知道目的IP地址是不够的,当对端主机收到该数据后,对端主机还需要对该主机做出响应,因此对端主机也需要发送数据给该主机,此时对端主机就必须知道该主机的IP地址。因此一个传输的数据当中应该涵盖其源IP地址和目的IP地址,目的IP地址表明该数据传输的目的地,源IP地址作为对端主机响应时的目的IP地址。

  这两个地址在数据传输过程中基本是不会发生变化的(存在一些特殊情况,比如在数据传输过程中使用NET技术,其源IP地址会发生变化,但至少目的IP地址是不会变化的)

  在数据进行传输之前,会先自顶向下贯穿网络协议栈完成数据的封装,其中在网络层封装的IP报头当中就涵盖了源IP地址和目的IP地址。而除了源IP地址和目的IP地址之外,还有源MAC地址和目的MAC地址的概念。

MAC 地址

基本概念

Mac地址(英语:Media Access Control Address),称为局域网地址,Mac地址用于确认一个网络设备位置的位址

  • Mac地址也称物理地址,硬件地址,是网络硬件(如无线网卡或以太网卡)分配的唯一地址
  • 在ISO模型中,第三层网络层负责IP地址,第二层链路层负责Mac位址
  • Mac地址为六组两位字符组成,由冒号分隔,例:00:A4:31:3A:1B:B7
  • Mac地址用于在网络中标识一个唯一的网卡,一台设备如果由一个或者多个网卡,则每张网卡都需要有一个唯一的MAC地址

示例:
在这里插入图片描述

源MAC地址 & 目的MAC地址

  大部分数据的传输都是跨局域网的,数据在传输过程中会经过若干个路由器,最终才能到达对端主机。

  源MAC地址和目的MAC地址是包含在链路层的报头当中的,而MAC地址实际只在当前局域网内有效,因此当数据跨网络到达下一个局域网时,其源MAC地址和目的MAC地址就需要发生变化,因此当数据达到路由器时,路由器会将该数据当中链路层的报头去掉,然后再重新封装一个报头,此时该数据的源MAC地址和目的MAC地址就发生了变化。

再举个送快递的例子:
假如此时你买了一个快递,其发货地是江苏省南京市XXX街道105号,收货地是浙江省宁波市东部新城XXX路231号,那么此时途中需要经过 苏州站——杭州站——宁波站,这里的每一站就相当于是数据在以太网传送过程中的MAC地址

因此数据在传输的过程中是有两套地址:

  1. 源IP地址和目的IP地址,这两个地址一般情况下在传送过程中不会发生改变
  2. 源MAC地址和目的MAC地址,这两个地址是一直在发生变化的,数据每一次到达下一个路由器就会去掉之前的MAC地址,转而加上新的MAC地址

端口号

基本概念

  端口号的主要作用是表示一台计算机中的特定进程所提供的服务。一台计算机上可以同时提供很多个服务,如数据库服务、FTP服务、web服务等,我们就通过端口号来区别相同计算机所提供的这些不同的服务

端口号(port)是传输层协议的内容

  • 端口号是一个2字节16位的整数
  • 端口号用来标识一个进程, 告诉操作系统, 当前的这个数据要交给哪一个进程来处理
  • IP地址 + 端口号 能够标识网络上的某一台主机的某一个进程
  • 一个端口号只能被一个进程占用

按端口号可分为2大类:

  1. 公认端口(Well-KnownPorts):范围从0到1023。

  2. 动态端口(Dynamic Ports):范围从1024到65535

源端口号 & 目的端口号

由于IP地址能够唯一标识公网内的一台主机,而端口号能够唯一标识一台主机上的一个进程,因此用IP地址+端口号就能够唯一标识网络上的某一台主机的某一个进程

当数据在传输层进行封装时,就会添加上对应源端口号和目的端口号的信息

  1. 通过源IP地址+源端口号就能够在网络上唯一标识发送数据的进程
  2. 通过目的IP地址+目的端口号就能够在网络上唯一标识接收数据的进程

这样就实现了跨网络的进程间通信。

注意一个进程可以绑定多个端口号,但是一个端口号不能被多个进程同时绑定。

TCP & UDP 协议

基本概念

  网络协议栈是贯穿整个体系结构的,在应用层、操作系统层和驱动层各有一部分。当我们使用系统调用接口实现网络数据通信时,不得不面对的协议层就是传输层,而传输层最典型的两种协议就是TCP协议和UDP协议。

  1. TCP(Transmission Control Protocol 传输控制协议)

    传输层协议、有连接、可靠传输、面向字节流

    TCP协议是一种面向连接的、可靠的、基于字节流的传输层通信协议。

    TCP协议是面向连接的,如果两台主机之间想要进行数据传输,那么必须要先建立连接,当连接建立成功后才能进行数据传输。其次,TCP协议是保证可靠的协议,数据在传输过程中如果出现了丢包、乱序等情况,TCP协议都有对应的解决方法。

  • UDP(User Datagram Protocol 用户数据报协议)

    传输层协议、无连接、不可靠传输、面向数据报

    UDP协议是一种无需建立连接的、不可靠的、面向数据报的传输层通信协议。

    使用UDP协议进行通信时无需建立连接,如果两台主机之间想要进行数据传输,那么直接将数据发送给对端主机就行了,但这也就意味着UDP协议是不可靠的,数据在传输过程中如果出现了丢包、乱序等情况,UDP协议本身是不知道的。

TCP 与 UDP 的抉择

  • TCP协议是一种可靠的传输协议,使用TCP协议能够在一定程度上保证数据传输时的可靠性,而UDP协议是一种不可靠的传输协议,为什么还要用UDP协议呢?

  • 首先,TCP协议虽然是一种可靠的传输协议,但这意味着TCP协议在需要做更多的工作来保证可靠性,因此TCP协议实现很复杂,TCP协议面向连接虽然可靠,但底层复杂,在传输速率上没有UDP快速。

  • UDP协议虽然是一种不可靠的传输协议,但UDP协议不需要做过多的工作,因此UDP协议实现一定比TCP协议要简单,UDP协议虽不可靠,但是它能够快速的将数据发送给对方。

  • 编写网络通信代码时具体采用TCP协议还是UDP协议,完全取决于上层的应用场景。如果应用场景严格要求数据在传输过程中的可靠性,此时我们就必须采用TCP协议,如果应用场景允许数据在传输出现少量丢包,那么肯定优先选择UDP协议,因为UDP协议足够简单,快速。

网络字节序

大端、小端字节序

  大端 和 小端表示多字节值的哪一端存储在该值的起始地址处,小端存储在起始地址处,即是小端字节序,大端存储在起始地址处,即是大端字节序。

  • 大端字节序(Big Endian):最高有效位存于最低内存地址处,最低有效位存于最高内存处;
  • 小端字节序(Little Endian):最高有效位存于最高内存地址,最低有效位存于最低内存处。

如图:
在这里插入图片描述

  内存中的多字节数据相对于内存地址有大端和小端之分, 磁盘文件中的多字节数据相对于文件中的偏移地址也有大端小端之分, 网络数据流同样有大端小端之分. 那么如何定义网络数据流的地址呢?
网络协议约定:

  • 发送主机通常将发送缓冲区中的数据按内存地址从低到高的顺序发出;
  • 接收主机把从网络上接到的字节依次保存在接收缓冲区中,也是按内存地址从低到高的顺序保存;
  • 因此,网络数据流的地址应这样规定:先发出的数据是低地址,后发出的数据是高地址.
  • TCP/IP协议规定,网络数据流应采用大端字节序,即低地址高字节.
  • 不管这台主机是大端机还是小端机, 都会按照这个TCP/IP规定的网络字节序来发送/接收数据;
  • 如果当前发送主机是小端, 就需要先将数据转成大端; 否则就忽略, 直接发送即可;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/309404.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YOLOv8模型剪枝实战:DepGraph(依赖图)方法

课程链接:YOLOv8模型剪枝实战:DepGraph(依赖图)方法_在线视频教程-CSDN程序员研修院 YOLOv8是一个当前非常流行的目标检测器,本课程使用DepGraph(依赖图)剪枝方法对YOLOv8进行网络剪枝,使其更加轻量和实用…

Qt快速入门(MV架构之TableView + QStandardItemModel + 自定义代理小案例)

Qt快速入门(MV架构之TableView QStandardItemModel 自定义代理小案例) 关于MV架构的简单介绍 在Qt框架中,代理(Delegate)、模型(Model)和视图(View)之间的关系构成了…

51单片机实验03-单片机定时/计数器实验

目录 一、实验目的 二、实验说明 1、51单片机有两个16位内部计数器/定时器(C/T, Counter/Timer)。 2、模式寄存器TMOD 1) M1M0工作模式控制位; 2) C/T定时器或计数器选择位: 3)GATE定时器/计数器运行…

Python零基础从小白打怪升级中~~~~~~~模块+异常+Pycharm的debug调试

第十节:模块异常Debug 一、Python模块 Python 模块(Module),是一个 Python 文件,以 .py 结尾,模块能定义函数,类和变量,模块里也能包含可执行的代码。 1、导入模块 导入模块的5中方式 import 模块名fr…

C++ 之 【类与对象】从入门到精通一条龙服务 最终篇(static成员、友元、匿名对象。。。)

💴到用时方恨早,白首方悔挣的少 车到山前没有路,悬崖勒马勒不住 一、再谈构造函数 1.构造函数体赋值 2.初始化列表 3.explicit关键字 二、Static成员 1.概念 2.特性 三、友元 1.友元函数 2.友元类 四、内部类 五、匿名对象 六、…

结合 tensorflow.js 、opencv.js 与 Ant Design 创建美观且高性能的人脸动捕组件并发布到InsCode

系列文章目录 如何在前端项目中使用opencv.js | opencv.js入门如何使用tensorflow.js实现面部特征点检测tensorflow.js 如何从 public 路径加载人脸特征点检测模型tensorflow.js 如何使用opencv.js通过面部特征点估算脸部姿态并绘制示意图tensorflow.js 使用 opencv.js 将人脸…

模型预测控制MPC(1)—— 基础概念

文章目录 1. 历史沿革1.1 控制论1.2 最优控制与强化学习 2. 模型预测控制 1. 历史沿革 我本科做机器人的时候接触过一点控制,主要做了大量 PID 在嵌入式控制系统的应用;硕士期间研究方向是强化学习。在我调研 MPC 的过程中,发现它同时出现在…

云笔记小程序的实现

1.前言 云笔记, 是基于HotApp小程序统计云后台提供的api接口开发的一个微信小程序。 2.功能 离线保存笔记 云端数据同步, 更换了设备也可以找到以前的笔记 接入了好推二维码提供的数据统计工具, 可以到平台上查看用户分析、留存分析、事件分析。 3.界面效果 ***HotApp云笔…

Redis Pipelining 底层原理分析及实践

作者:vivo 互联网服务器团队-Wang Fei Redis是一种基于客户端-服务端模型以及请求/响应的TCP服务。在遇到批处理命令执行时,Redis提供了Pipelining(管道)来提升批处理性能。本文结合实践分析了Spring Boot框架下Redis的Lettuce客户端和Redisson客户端对…

行云堡垒国密算法应用与信创支持

一、 国密算法和信创的介绍 1.1 什么是国密算法 国密算法是国家密码管理局制定颁布的一系列的密码标准,即已经被国家密码局认定的国产密码算法,又称商用密码(是指能够实现商用密码算法的加密,解密和认证等功能的技术)…

excel里如何的科学计数法的数字转换成数值?

比如下图,要想把它们转换成3250跟1780,有什么快捷的办法吗? 科学计数法在excel里的格式,与我们常规在数学上写的有差异。这个转换可以这样做: 1.转换后的效果: 2.问题分析 题目中所附截图,单元…

Day96:云上攻防-云原生篇Docker安全系统内核版本漏洞CDK自动利用容器逃逸

目录 云原生-Docker安全-容器逃逸&系统内核漏洞 云原生-Docker安全-容器逃逸&docker版本漏洞 CVE-2019-5736 runC容器逃逸(需要管理员配合触发) CVE-2020-15257 containerd逃逸(启动容器时有前提参数) 云原生-Docker安全-容器逃逸&CDK自动化 知识点&#xff1…

Redis入门到通关之Set命令

文章目录 ⛄ 概述⛄ Set类型的常见命令⛄RedisTemplate API❄️❄️ 添加Set缓存(值可以是一个,也可是多个)❄️❄️设置过期时间(单独设置)❄️❄️根据key获取Set中的所有值❄️❄️根据value从一个set中查询,是否存在❄️❄️获取Set缓存的长度❄️❄️移除指定的…

云服务器安装Mysql、MariaDB、Redis、tomcat

前置工作 进入根目录 cd / 进入/user/local文件夹 上传压缩包 rz 压缩包 Mysql 1.下载并安装MySQL官方的 Yum Repository wget http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm rpm -ivh mysql-community-release-el7-5.noarch.rpm yum install mysql-…

博途v17与winCC安装流程与踩坑记录

博途v17与winCC7.5安装教程与踩坑记录 安装教程博途安装流程第一步 注册表删除第二步 启用.NET Framework服务第三步 正式安装 winCC安装流程 博途v17与winCC安装记录win11家庭版 安装教程 首先说明,本文安装针对的是TIA portal V17 (64bit)与winCC 7.5SP2。安装在…

基于ollama搭建本地chatGPT

ollama帮助我们可以快速在本地运行一个大模型,再整合一个可视化页面就能构建一个chatGPT,可视化页面我选择了chat-ollama(因为它还能支持知识库,可玩性更高),如果只是为了聊天更推荐chatbox 部署步骤 下载…

科研学习|科研软件——如何使用SmartPLS软件进行结构方程建模

SmartPLS是一种用于结构方程建模(SEM)的软件,它可以用于定量研究,尤其是在商业和社会科学领域中,如市场研究、管理研究、心理学研究等。 一、准备数据 在使用SmartPLS之前,您需要准备一个符合要求的数据集。…

1.MMD模型动作场景镜头的导入及视频导出

界面介绍 MIKUMIKUDANCE926版本 MMD的工具栏模型骨骼帧的窗口,在不同时间做不同动作,可以在这里打帧操作时间曲线操作窗口,控制模型两个动作之间的过渡模型操作窗口,导入模型选择模型相机操作,控制相机远近&#xf…

详解拷贝构造

拷贝构造的功能 写法: 拷贝构造函数的参数为什么是引用类型 系统自动生成的拷贝构造函数 拷贝构造的深拷贝与浅拷贝 概念 浅拷贝: 深拷贝 小结 拷贝构造的功能 拷贝构造函数可以把曾经实例化好的对象的数据拷贝给新创建的数据 ,可见…

计算机网络常问面试题

一.HTTPS是如何保证安全传输的 https通过使⽤对称加密、⾮对称加密、数字证书等⽅式来保证数据的安全传输。 客户端向服务端发送数据之前,需要先建⽴TCP连接,所以需要先建⽴TCP连接,建⽴完TCP连接后,服务端会先给客户端发送公钥…