文献速递:深度学习胰腺癌诊断--胰腺肿瘤的全端到端深度学习诊断

Title 

题目

Fully end-to-end deep-learning-based diagnosis of

pancreatic tumors

胰腺肿瘤的全端到端深度学习诊断

01

文献速递介绍

胰腺癌是最常见的肿瘤之一,预后不良且通常是致命的。没有肿瘤的患者只需要进一步观察,而胰腺肿瘤的诊断需要紧急行动和明确的手术计划。如果延迟治疗,病情恶化和死亡的风险将增加,使得胰腺肿瘤的准确诊断对其成功的手术治疗至关重要。

人工智能可以帮助提高影像解释的准确性,并使诊断专业知识更广泛地可用。然而,胰腺肿瘤诊断的人工智能方法发展不够成熟,因为这一任务尤其具有挑战性。首先,目标在形状、大小和位置上高度可变,并且仅占整个CT图像的非常小的一部分。在我们的CT数据集中,胰腺仅占每个CT图像的约1.3%。其余信息来自其他器官,如肝脏、胃、肠道和图像背景,这些信息几乎不会影响人工智能模型的诊断。此外,肿瘤与周围组织的高相似性进一步降低了准确性和诊断效率。第三点是缺乏合适的胰腺图像数据集,这直接影响了人工智能模型的发展。

先前的研究已经尝试解决这些问题。一种有效的方法是胰腺分割。Chakraborty等人基于手动分割的CT图像,利用随机森林和支持向量机学习预测胰腺高风险乳头状粘液性肿瘤(IPMN)。Wei等人提出了一个支持向量机系统,包含24个基于指南的特征和385个放射组学高通量特征,结合由放射科医师标记的感兴趣区域(ROI)来诊断胰腺浆液性囊性肿瘤(SCN)。随着深度学习框架的发展,研究人员已经能够构建有效的深度编码器-解码器网络进行胰腺分割,提高了诊断准确性。Zhu等人报告了一种多尺度分割方法,通过检查是否有足够数量的体素被分割为肿瘤来筛查胰管腺癌(PDAC)。Liu等人首先分割胰腺,然后分类异常以检测PDAC。然而,在不增加医疗专家工作量或程序成本的情况下,高效获得即时诊断和治疗建议仍然是一个重大问题。由于原始患者数据(来自医院记录)包含了CT检查的诊断报告和不同成像平面以及血管造影阶段的图像,因此可用于诊断的有效CT图像的比例很小。因此,成功应用深度学习框架的关键在于对原始数据进行详细的自动预处理。

本研究提出了一个完全端到端的深度学习(FEE-DL)模型,用于从原始腹部CT图像自动诊断胰腺肿瘤。该模型的方法论有四个步骤,用于从原始数据中定位胰腺肿瘤:影像筛选、胰腺定位、胰腺分割和胰腺肿瘤诊断。

Abstract-Background 

摘要

Artificial intelligence can facilitate clinical decision making by considering massive amounts of medical imaging data. Various algorithms have been implemented for different clinical applications. Accurate diagnosis and treatment require reliable and interpretable data. For pancreatic tumor diagnosis, only58.5% of images from the First Affiliated Hospital and the Second Affiliated Hospital, Zhejiang University School of Medicine are used, increasing labor and time costs to manually filter out images not directly used by the diagnostic model.

人工智能在临床决策中能够通过考虑大量医学影像数据来提供帮助。不同的算法已经应用于不同的临床应用中。准确的诊断和治疗需要可靠且可解释的数据。对于胰腺肿瘤的诊断,浙江大学医学院附属第一医院和第二医院的影像数据只使用了58.5%,增加了手动筛选出未被诊断模型直接使用的影像的劳动力和时间成本。

Results

结果

We established a fully end-to-end deep-learning model for diagnosing pancreatic tumors and proposing treatment. The model considers original abdominal CT images without any manual preprocessing. Our artificial-intelligence-based system achieved an area under the curve of 0.871 and a F1 score of 88.5% using an independent testing dataset containing 107,036 clinical CT images from 347 patients. The average accuracy for all tumor types was 82.7%, and the independent accuracies of identifying intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma were 100% and 87.6%, respectively. The average test time per patient was 18.6 s, compared with at least 8 min for manual reviewing. Furthermore, the model provided a transparent and interpretable diagnosis by producing saliency maps highlighting the regions relevant to its decision.

我们建立了一个完全端到端的深度学习模型,用于诊断胰腺肿瘤并提出治疗方案。该模型考虑了原始腹部CT影像,没有进行任何手动预处理。我们基于包含347名患者的107,036张临床CT影像的独立测试数据集,人工智能系统实现了0.871的曲线下面积和88.5%的F1分数。对于所有肿瘤类型的平均准确率为82.7%,识别乳头状粘液性肿瘤和胰管腺癌的独立准确率分别为100%和87.6%。每位患者的平均测试时间为18.6秒,而手动审查至少需要8分钟。此外,该模型通过生成突出显示与其决策相关区域的显著性图,提供了透明且可解释的诊断。

Conclusions

结论

The proposed model can potentially deliver efficient and accurate preoperative diagnoses that could aid the surgical management of pancreatic tumor.

所提出的模型有可能提供高效准确的术前诊断

Method

方法

This study used a training dataset of 143,945 dynamic contrast-enhanced CT images of the abdomen from 319 patients. The proposed model contained four stages: image screening, pancreas location, pancreas segmentation, and pancreatic tumor diagnosis.

本研究使用了319名患者的143,945张动态增强CT腹部影像的训练数据集。提出的模型包含四个阶段:影像筛选、胰腺定位、胰腺分割和胰腺肿瘤诊断。

Figure

图片

Figure 1. The original files obtained from the hospitals contain different file formats, different imaging planes and different angiography phases. (A) Artificial intelligence approaches currently used for pancreatic diagnosis focus on the analysis of valid CT images, and ignore the importance of screening the original data at an early stage. (B) Our proposed FEE-DL model first screens out transverse plane CT images containing the pancreas from complex original files before deep-learning diagnosis.

图1. 从医院获取的原始文件包含不同的文件格式、不同的成像平面和不同的血管造影相。(A) 当前用于胰腺诊断的人工智能方法专注于分析有效的CT图像,忽略了在早期阶段筛选原始数据的重要性。(B) 我们提出的完全端到端深度学习模型首先从复杂的原始文件中筛选出包含胰腺的横断面CT图像,然后进行深度学习诊断。

图片

Figure 2. Multiplex original clinical data. (A-C) Images not directly used by the FEE-DL model containing (A) coronal plane CT scan, (B) sagittal plane CT scan, and (C) CT scan without pancreas. (D) Arterial, (E) venous, and (F) delayed phase CT scans.

图2. 多重原始临床数据。(A-C) 不直接被完全端到端深度学习模型使用的图像,包括(A) 冠状面CT扫描,(B) 矢状面CT扫描,以及(C) 不含胰腺的CT扫描。(D) 动脉期,(E) 静脉期,和(F) 延迟期CT扫描。

图片

Figure 3. Workflow diagram of the model’s training and testing phase. In the training phase, after valid images screening and data augmentation from the original abdominal CT images, we constructed a deep-learning model involving pancreas location, pancreas segmentation, image fusion and pancreatic tumor diagnoses. The loss function is calculated according to the prediction and label, and the weights of the neural networks are updated according to the back-propagation algorithm. The best weights are fixed for subsequent use on the testing dataset to diagnose pancreatic tumor.

图3. 模型的训练和测试阶段的工作流程图。在训练阶段,经过从原始腹部CT图像中筛选出有效图像并进行数据增强后,我们构建了一个深度学习模型,涉及胰腺定位、胰腺分割、图像融合和胰腺肿瘤诊断。根据预测和标签计算损失函数,并根据反向传播算法更新神经网络的权重。最佳权重被固定用于对测试数据集进行胰腺肿瘤的诊断。

图片

Figure 4. Architectures of the three sub-networks: (A) ResNet18 for pancreas location, (B) U-Net32 for pancreas segmentation, and (C) ResNet34 for pancreatic tumor diagnosis. (D) Detailed structures of the identity (ID), down sampling (DS), and convolution (Conv) blocks. (AvgPool, average-pooling; BN, batch normalization; Concate, concatenation; FC, fully connected; MaxPool, max-pooling; ReLU, rectified linear unit; Trans, transposed).

图4. 三个子网络的架构:(A) 用于胰腺定位的 ResNet18,(B) 用于胰腺分割的 U-Net32,以及 (C) 用于胰腺肿瘤诊断的 ResNet34。(D) 身份(ID)、下采样(DS)和卷积(Conv)模块的详细结构。(AvgPool,平均池化;BN,批量归一化;Concate,串联;FC,全连接;MaxPool,最大池化;ReLU,修正线性单元;Trans,转置)。

图片

Figure 5. Performance of each sub-network in the training and validation datasets. (A) ResNet18 for pancreas location. (B) U-Net32 for pancreas segmentation. (C) ResNet34 for pancreatic tumor diagnoses. (D) Representative results of pancreas segmentation. Rows from top to bottom are input CT images, ground truth, prediction, fusion results, and pancreas contours in CT, respectively, where radiologists’ annotations are shown in green and computerized segmentation is displayed in red. Higher resolution images are also shown on the lower left side.

图5. 每个子网络在训练和验证数据集中的性能。(A) 用于胰腺定位的 ResNet18。(B) 用于胰腺分割的 U-Net32。(C) 用于胰腺肿瘤诊断的 ResNet34。(D) 胰腺分割的代表性结果。从上到下的行分别是输入 CT 图像、地面真相、预测、融合结果和 CT 中的胰腺轮廓,其中放射科医生的标注显示为绿色,计算机分割显示为红色。较高分辨率的图像也显示在左下角

图片

Figure 6. Performance of the FEE-DL model. (A) Confusion matrix. (B) Receiver operating characteristic (ROC) curves of the model and random prediction for comparison. The area under the curve (AUC) was 0.871. (C) Prediction accuracy of different pancreatic tumors with respect to the average accuracy (82.7%). (IPMN, intraductal papillary mucinous neoplasm; PDAC, pancreatic ductal adenocarcinoma; SCN, serous cystic neoplasm).

图6. FEE-DL模型的性能。(A) 混淆矩阵。(B) 模型和随机预测的接收者操作特征曲线(ROC曲线)进行比较。曲线下面积(AUC)为0.871。(C) 不同胰腺肿瘤的预测准确度与平均准确度(82.7%)的关系。(IPMN,胰管内乳头状黏液性肿瘤;PDAC,胰管腺癌;SCN,浆液性囊性肿瘤)。

图片

Figure 7. Comparison of saliency maps for (A-C) a tumor patient and (D-F) a normal control in different angiography phases: left, arterial phase; center, venous phase; and right, delayed phase.

图7. 不同血管造影相位下肿瘤患者(A-C)和正常对照(D-F)的显著性图比较:左侧,动脉期;中间,静脉期;右侧,延迟期。

Table

图片

Table 1 lists the types of pancreatic tumor and their frequency in the training and testing datasets. Pancreatic cancer (PDAC) and pancreatic tumors such as IPMN, pancreatic neuroendocrine tumors (PNET), SCN, and ‘Other’ are considered as positive cases. Rare cases or lesions on the pancreas caused by

表1 列出了训练和测试数据集中胰腺肿瘤的类型及其频率。胰腺癌(PDAC)和诸如IPMN、胰腺神经内分泌肿瘤(PNET)、SCN和“其他”等胰腺肿瘤被视为阳性病例。由胰腺引起的罕见病例或病变。

图片

Table 2. Patient characteristics in the training and testing datasets

表2 列出了训练和测试数据集中患者的特征。

图片

Table 3. Performance of each sub-network

表3. 每个子网络的性能

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/310309.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker核心特征

Docker的基本概念 Dockerfile:制作进行的文件,可以理解为制作镜像的一个清单。 镜像:用来创建容器的安装包,可以理解为给电脑安装操作系统的系统镜像。 容器:通过镜像来创建的一套运行环境,一个容器里可…

Rust - 所有权

所有的程序都必须和计算机内存打交道,如何从内存中申请空间来存放程序的运行内容,如何在不需要的时候释放这些空间,成了重中之重,也是所有编程语言设计的难点之一。在计算机语言不断演变过程中,出现了三种流派&#xf…

《CSS 知识点》仅在文本有省略号时添加 tip 信息

html <div ref"btns" class"btns"><div class"btn" >这是一段很短的文本.</div><div class"btn" >这是一段很短的文本.</div><div class"btn" >这是一段很长的文本.有省略号和tip.<…

【Canvas技法】蓝底金字北岛诗节选(径向渐变色、文字阴影示例)

【效果图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>北岛诗选</title><style type"text/css">.c…

FireProx:一款功能强大的AWS API网关管理与IP地址轮换代理工具

关于FireProx FireProx是一款功能强大的AWS API网关安全管理工具&#xff0c;该工具可以帮助广大研究人员创建实现唯一IP地址轮换的实时HTTP转发代理。 在发送网络请求或进行网络交互时&#xff0c;实现源IP地址轮换是一个非常复杂的过程&#xff0c;虽然社区中也有相关的工具…

【爬虫开发】爬虫从0到1全知识md笔记第5篇:Selenium课程概要,selenium的其它使用方法【附代码文档】

爬虫开发从0到1全知识教程完整教程&#xff08;附代码资料&#xff09;主要内容讲述&#xff1a;爬虫课程概要&#xff0c;爬虫基础爬虫概述,,http协议复习。requests模块&#xff0c;requests模块1. requests模块介绍,2. response响应对象,3. requests模块发送请求,4. request…

JVM 垃圾收集器

JVM 垃圾收集器 垃圾收集器 垃圾收集器 Serial (串行)&#xff1a;单线程垃圾回收器&#xff1b;采用复制算法 Serial Old&#xff1a;Serial 收集器的老年代版本&#xff0c;采用标记-整理算法。 ParNew&#xff1a;多线程的垃圾回收器&#xff08;Serial 的多线程版本&#x…

Springboot+Vue项目-基于Java+Mysql的网上订餐系统(附源码+LW+演示录像)

大家好&#xff01;我是程序猿老A&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f49e;当前专栏&#xff1a;Java毕业设计 精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; &#x1f380; Python毕业设计 &…

MySQL 快问快答

我写这篇文章的目的只有一个&#xff1a;通过这些问题来帮助我去将我脑子里的MySQL脑图给巩固熟悉&#xff0c;通过回答这些问题&#xff0c;让我对脑子里的MySQL知识有更深的印象&#xff0c;当什么时候我的MySQL脑图不熟的时候&#xff0c;我就可以拿这篇文章来去巩固一下&am…

【VUE】Vue3自由拖拽标签

效果&#xff1a; 代码&#xff1a; <template> <div><div v-move class"box"><label class"move">拽我</label> </div> </div> </template> <script setup lang"ts">import { ref, …

【Linux C | 多线程编程】线程同步 | 互斥量(互斥锁)介绍和使用

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; ⏰发布时间⏰&#xff1a; 本文未经允许…

【详解算法流程+程序】DBSCAN基于密度的聚类算法+源码-用K-means和DBSCAN算法对银行数据进行聚类并完成用户画像数据分析课设源码资料包

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法。 与划分和层次聚类方法不同&#xff0c;它将簇定义为密度相连的点的最大集合&#xff0c;能够把具有足够高密度的区域划分为簇&#xff0c; 并可在噪声的空间数据…

占显存类代码随手丢垃圾习惯的重要性

def calculate_similarity(model, image_1, image_2, drawFalse):image_1_pil Image.fromarray(image_1)image_2_pil Image.fromarray(image_2)probability model.detect_image(image_1_pil, image_2_pil, draw)每次跑完显存代码都释放显存torch.cuda.empty_cache()return p…

【Entity Framework】你要知道EF中功能序列与值转换

【Entity Framework】你要知道EF中功能序列与值转换 文章目录 【Entity Framework】你要知道EF中功能序列与值转换一、序列1.1 基本用法1.2 配置序列设置 二、值转换2.1 配置值转换器2.2 批量配置值转换器2.3 预定义的转换2.4 ValueConverter类2.5 内置转换器 三、应用3.1 简单…

顶顶通呼叫中心中间件-SIP分机安全(mod_cti基于FreeSWITCH)

介绍 运行在公网的FreeSWITCH服务器&#xff0c;每天都会接收到很多恶意的呼叫请求和注册请求&#xff0c;尝试盗打电话。合理的配置可以防止电话给倒打&#xff0c;但是每天大量的攻击&#xff0c;会让FS产生很多日志&#xff0c;降低FreeSWITCH的处理能力&#xff0c;cti模块…

计算机网络常见面试总结

文章目录 1. 计算机网络基础1.1 网络分层模型1. OSI 七层模型是什么&#xff1f;每一层的作用是什么&#xff1f;2.TCP/IP 四层模型是什么&#xff1f;每一层的作用是什么&#xff1f;3. 为什么网络要分层&#xff1f; 1.2 常见网络协议1. 应用层有哪些常见的协议&#xff1f;2…

开源免费的多功能PDF工具箱

它支持修改PDF、编辑PDF书签、导出PDF书签、导入书签、生成、合并、拆分、提取页面内容、提取图片、OCR 功能介绍: 修改PDF信息&#xff1a;修改文档属性、页码编号、页面链接、页面尺寸&#xff1b;删除自动打开网页等动作&#xff0c;去除复制及打印限制&#xff1b;设置阅读…

半导体材料(一)

本篇为西安交通大学本科课程《电气材料基础》的笔记。 本篇为这一单元的第一篇笔记&#xff0c;下一篇传送门。 半导体是导电能力介于均属导体和绝缘体之间的固体材料。 半导体基本特征 室温下其电阻数量级约为 1 0 − 6 ∼ 1 0 8 Ω ⋅ m 10^{-6}\sim10^{8}\mathrm{\Omega…

C++项目——集群聊天服务器项目(十四)客户端业务

大家好~前段时间有些事情需要处理&#xff0c;没来得及更新&#xff0c;实在不好意思。 今天来继续更新集群聊天服务器项目的客户端功能&#xff0c;主要实现客户端业务&#xff0c;包括添加好友、点对点聊天、创建群组、添加群组、群组聊天业务&#xff0c;接下来我们一起来敲…

基于velero和minio实现k8s数据的备份

1.30部署minio rootk8s-harbor:/etc/kubeasz/clusters/k8s-cluster1# docker run \ -d --restartalways -p 9000:9000 -p 9090:9090 –name minio -v /data/minio/data:/data -e “MINIO_ROOT_USERadmin” -e “MINIO_ROOT_PASSWORD12345678” quay.io/minio/minio server…