2024五一杯数学建模C题思路分析

文章目录

  • 1 赛题思路
  • 2 比赛日期和时间
  • 3 组织机构
  • 4 建模常见问题类型
    • 4.1 分类问题
    • 4.2 优化问题
    • 4.3 预测问题
    • 4.4 评价问题
  • 5 建模资料

1 赛题思路

(赛题出来以后第一时间在CSDN分享)
https://blog.csdn.net/dc_sinor?type=blog

2 比赛日期和时间

报名截止时间:2024年4月30日(周二)24:00

比赛开始时间:2024年5月1日(周三)10:00

比赛结束时间:2024年5月4日(周六)12:00

3 组织机构

数学建模竞赛是一项模拟面对实际问题寻求解决方案的活动,是一次近似于“真刀真枪”的创新探索性实践训练。在丰富并活跃学生课外生活活动的同时,数学建模竞赛有助于训练学生的想象力、洞察力和创造力,有助于培养学生团结合作组织能力和查阅文献、收集资料、文字表达能力,有助于受到科学研究的基本训练。

五一数学建模竞赛是大学生自发组织的全国性数学建模竞赛,2023 年第二十届五一数学建模竞赛吸引了近 5800 支队伍、1.64 万多名学生参赛。五一数学建模竞赛的题目主要由工程技术、经济管理、社会生活等领域中的实际问题抽象加工而成,没有事先设定的标准答案,留有充分余地供参赛者发挥聪明才智。历届赛题大多数都来自企事业的实际问题或科研项目。这些问题的解决带来了良好的经济效益和社会效益。

4 建模常见问题类型

趁现在赛题还没更新,A君给大家汇总一下建模经常使用到的数学模型,题目八九不离十基本属于一下四种问题,对应的解法A君也相应给出

分别为:

  • 分类模型
  • 优化模型
  • 预测模型
  • 评价模型

4.1 分类问题

判别分析:

又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。

其基本原理是按照一定的判别准则,建立一个或多个判别函数;用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标;据此即可确定某一样本属于何类。当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。

聚类分析:

聚类分析或聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。

聚类分析本身不是某一种特定的算法,而是一个大体上的需要解决的任务。它可以通过不同的算法来实现,这些算法在理解集群的构成以及如何有效地找到它们等方面有很大的不同。

神经网络分类:

BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

4.2 优化问题

线性规划:

研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

非线性规划:

非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

整数规划:

规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

动态规划:

包括背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等。

动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

多目标规划:

多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。任何多目标规划问题,都由两个基本部分组成:

(1)两个以上的目标函数;
(2)若干个约束条件。有n个决策变量,k个目标函数, m个约束方程,则:

Z=F(X)是k维函数向量,Φ(X)是m维函数向量;G是m维常数向量;

4.3 预测问题

回归拟合预测

拟合预测是建立一个模型去逼近实际数据序列的过程,适用于发展性的体系。建立模型时,通常都要指定一个有明确意义的时间原点和时间单位。而且,当t趋向于无穷大时,模型应当仍然有意义。将拟合预测单独作为一类体系研究,其意义在于强调其唯“象”性。一个预测模型的建立,要尽可能符合实际体系,这是拟合的原则。拟合的程度可以用最小二乘方、最大拟然性、最小绝对偏差来衡量。

灰色预测

灰色预测是就灰色系统所做的预测。是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

马尔科夫预测:是一种可以用来进行组织的内部人力资源供给预测的方法.它的基本 思想是找出过去人事变动的 规律,以此来推测未来的人事变动趋势.转换矩阵实际上是转换概率矩阵,描述的是组织中员工流入,流出和内部流动的整体形式,可以作为预测内部劳动力供给的基础.

BP神经网络预测

BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛的神经网络模型,多用于函数逼近、模型识别分类、数据压缩和时间序列预测等。

支持向量机法

支持向量机(SVM)也称为支持向量网络[1],是使用分类与回归分析来分析数据的监督学习模型及其相关的学习算法。在给定一组训练样本后,每个训练样本被标记为属于两个类别中的一个或另一个。支持向量机(SVM)的训练算法会创建一个将新的样本分配给两个类别之一的模型,使其成为非概率二元线性分类器(尽管在概率分类设置中,存在像普拉托校正这样的方法使用支持向量机)。支持向量机模型将样本表示为在空间中的映射的点,这样具有单一类别的样本能尽可能明显的间隔分开出来。所有这样新的样本映射到同一空间,就可以基于它们落在间隔的哪一侧来预测属于哪一类别。

4.4 评价问题

层次分析法

是指将一个复杂的 多目标决策问题 作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

优劣解距离法

又称理想解法,是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解,即各指标的最大值和最小值,通过计算每个方案到理想方案的相对贴近度,即靠近正理想解和远离负理想解的程度,来对方案进行排序,从而选出最优方案。

模糊综合评价法

是一种基于模糊数学的综合评标方法。 该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。 它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

灰色关联分析法(灰色综合评价法)

对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

典型相关分析法:是对互协方差矩阵的一种理解,是利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。

主成分分析法(降维)

是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

因子分析法(降维)

因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。

BP神经网络综合评价法

是一种按误差逆传播算法训练的多层前馈网络,是应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

5 建模资料

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/310975.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

四.音视频编辑-音频混合-概述

引言 当我们在前两篇博客中成功地构建了一个媒体组合,并且略过了音频部分时,我们意识到了我们需要对这个项目进行更详细的探讨。在本篇博客中,我们将会展示如何创建一个包含视频轨道、配音音频轨道以及背景音频轨道的完整媒体组合。更进一步…

lua 环境安装

下载地址: https://luabinaries.sourceforge.net/download.html 安装环境变量 检查一下是否安装成功,有版本号,打印一句话,如下表示成功 idea 安装插件,方便编写lua脚本 配置一下idea 运行测试 local function m…

经典文献阅读之--Light-LOAM( 基于图匹配的轻量级激光雷达里程计和地图构建)

0. 简介 将SLAM应用于机器人应用中,可靠性和效率是两个最受重视的特性。本文《Light-LOAM: A Lightweight LiDAR Odometry and Mapping based on Graph-Matching》考虑在计算能力有限的平台上实现可靠的基于激光雷达的SLAM功能。首先与大多数选择点云配准的显著特征…

国税发票查验接口、电子增值税发票查验接口、数电票查验接口

翔云发票查验接口支持增值税发票管理系统开具发票的真伪,通过发票代码、号码、日期、金额、校验码四要素信息进行真伪的查验,支持返回全票面信息,API接口便于集成,可适用于多种应用场景。 发票查验接口python调用示例:…

正则表达式(Regular Expression)

正则表达式很重要,是一个合格攻城狮的必备利器,必须要学会!!! (参考视频)10分钟快速掌握正则表达式(奇乐编程学院)https://www.bilibili.com/video/BV1da4y1p7iZ在线测试…

分布式监控平台---Zabbix

一、Zabbix概述 作为一个运维,需要会使用监控系统查看服务器状态以及网站流量指标,利用监控系统的数据去了解上线发布的结果,和网站的健康状态。 利用一个优秀的监控软件,我们可以: 通过一个友好的界面进行浏览整个…

CSRF漏洞详解

目录 什么是同源策略 什么是csrf CSRF 攻击会产生什么影响? CSRF漏洞low等级复现 什么是同源策略 协议相同 域名相同 端口相同 什么是csrf 跨站请求伪造(也称为 CSRF)是一种 Web 安全漏洞,允许攻击者诱导用户执行他们不打…

华为各级OD薪资曝光。。

华为 OD 薪资 之前写过几篇华为 OD 的算法题,后来有不少同学问起,华为 OD 薪资到底怎么样。 华为 OD 的薪资待遇,网上信息不多,只找到一篇相对靠谱的爆料: 上述是月 base 的爆料,然后通常 OD 是 15-16 薪。…

如何连通私有子网中的 MSK / Kafka 集群?

MSK 集群通常都是建在私有子网中的,这给本地访问带来了很多麻烦,特别是需要在本地使用 Kafka GUI 客户端管理和读写 MSK 数据的时候。本文会给出一套解决方案。 我们这里讨论的问题有一点特殊性,那就是:由于 MSK 是托管服务&…

标准版uni-app移动端页面添加/开发操作流程

页面简介 uni-app项目中,一个页面就是一个符合Vue SFC规范的.vue文件或.nvue文件。 .vue页面和.nvue页面,均全平台支持,差异在于当uni-app发行到App平台时,.vue文件会使用webview进行渲染,.nvue会使用原生进行渲染。…

单元测试四大过程

单元测试四大过程(蓝桥课学习笔记) 单元测试过程 单元测试是软件测试过程中的一个关键环节,它与集成测试、系统测试一样,分为测试策划、测试设计、测试执行和测试总结几个阶段。 单元测试过程中每个阶段需要完成的主要工作如下&…

Ubuntu配置VScode的C++环境

在Ubuntu系统下配置C环境,并运行helloworld 1. 下载VScode 我这里使用的是星火应用商店,在商店里面可以直接下载安装 http://spark-app.store/ 2.创建文件夹 3.启动VScode并打开该文件夹 4.安装以下几个扩展 PS:Clang这个插件别安装&…

使用TomCat写Film前后端项目0414

使用TomCat写Film前后端项目源文件0414-CSDN博客 实现功能: 得到数据库所有电影数据在首页显示出来 添加 删除 修改 点击修改,获取编号id,传入到根据id编号查询数据的控制器转发数据到 修改的jsp页面。 获取修改数据传入到根据id修改数据的控…

【word2pdf】Springboot word转pdf(自学使用)

文章目录 概要整体介绍具体实现官网pom文件增加依赖 遇到的问题本地运行OK,发布到Linux报错还是本地OK,但是Linux能运行的,但是中文乱码 小结 概要 Springboot word 转 pdf 整体介绍 搜了一下,发现了能实现功能的方法有四种 U…

JDBC 数据库连接

文章目录 JDBC核心技术第1章:JDBC概述1.1 数据的持久化1.2 Java中的数据存储技术1.3 JDBC介绍1.4 JDBC体系结构1.5 JDBC程序编写步骤 第2章:获取数据库连接三要素2.1 要素一:Driver接口实现类2.1.1 Driver接口介绍2.1.2 加载与注册JDBC驱动 2…

SETR——Rethinking系列工作,展示使用纯transformer在语义分割任务上是可行的,但需要很强的训练技巧

题目:Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers 作者: 开源:https://fudan-zvg.github.io/SETR 1.研究背景 1.1 为什么要研究这个问题? 自[ 36 ]的开创性工作以来,现有的语义分割模型主要是**基于全卷积网络( FCN )的…

windows网络驱动开发

基石:WFP 1、简介 Windows过滤平台(Windows Filtering Platform, WFP),是从Vista系统后新增的一套系统API和服务。开发者可以在WFP框架已划分的不同分层中进行过滤、重定向、修改网络数据包,以实现防火墙、入侵检测系…

GNU Radio Radar Toolbox编译及安装

文章目录 前言一、GNU Radio Radar Toolbox 介绍二、gr-radar 安装三、具体使用四、OFDM 雷达仿真 前言 GNU Radio Radar Toolbox(gr-radar)是一个开放源码的工具箱,用于 GNU Radio 生态系统,主要目的是为雷达信号处理提供必要的…

JDK自带的线程池有哪些?

1、Executors.newFixedThreadPool(4); // 核心线程 传几个就有几个核心线程和最大线程数 2、Executors.newCachedThreadPool(); // 核心线程0 ,全是临时工,最大线程数为21亿 3、Executors.newScheduledThreadPool(4); // 传几个就有几个核心线程&#xf…

OSPF 开放式最短路径优先协议

目录 技术产生原因:因为RIP存在不足 OSPF优点: RIPV2和OSPFV2比较: 相同点: 不同点: OSPF的结构化部署 --- 区域划分 区域划分的主要目的: 区域边界路由器 --- ABR : 区域划分的要求&am…