利用redis和fastapi实现本地与平台策略进行交互

redis在pandas一文有详细使用方法(一文教会pandas-CSDN博客),具体可视化软件有redisstudio等。它是一个由 Salvatore Sanfilippo 写的 key-value 存储系统,是跨平台的非关系型数据库。

Redis 是一个开源的使用 ANSI C 语言编写、遵守 BSD 协议、支持网络、可基于内存、分布式、可选持久性的键值对(Key-Value)存储数据库,并提供多种语言的 API。

Redis 通常被称为数据结构服务器,因为值(value)可以是字符串(String)、哈希(Hash)、列表(list)、集合(sets)和有序集合(sorted sets)等类型。

这里主要阐述redis事务:

Redis 事务可以一次执行多个命令, 并且带有以下三个重要的保证:

  • 批量操作在发送 EXEC 命令前被放入队列缓存。

  • 收到 EXEC 命令后进入事务执行,事务中任意命令执行失败,其余的命令依然被执行。

  • 在事务执行过程,其他客户端提交的命令请求不会插入到事务执行命令序列中。

一个事务从开始到执行会经历以下三个阶段:

  • 开始事务。

  • 命令入队。

  • 执行事务。

如果你想在服务器上运行你随时写的代码,可以将代码写入 Redis 数据库,然后在远程服务器上读取并执行这些代码,通常涉及以下步骤:

  1. 序列化代码:将代码转换为一种可以存储在 Redis 中的格式,通常是字符串格式。

  2. 写入 Redis:将序列化后的代码存储在 Redis 数据库中。

  3. 读取代码:从 Redis 数据库中读取存储的代码。

  4. 反序列化代码:将读取到的字符串格式代码转换回可执行的格式。

  5. 执行代码:在安全的环境中执行这些代码。

假设你有一段代码:

# 一段函数
def my_function():print("This is my function running!")# 将其convert为字符串:
code_str = inspect.getsource(my_function)# 一段可执行程序
import inspect
code = '''
a=1
if a>1:print("Hello, World!")
else:print('error')
'''r.set('code_snippet', code)# 一个文件
with open('macd_test.py', 'r') as file:file_content = file.read()r.set('python_file_content', file_content)

然后将这个字符串存储在 Redis 中。

import redis# 连接到 Redis
r = redis.Redis(host='127.0.0.1', port=6379, db=8)# 将代码存储为 Redis 字符串
r.set('my_function_code', code_str)

在远程服务器上,授权 Redis远程连接权限并读取这个字符串。

# 读取代码
code_str = r.get('my_function_code').decode('utf-8')

反序列化代码,用 exec 或 eval 函数来执行字符串形式的代码:

# 反序列化并执行代码
exec(code_str)

得到运行结果:

这种方式是在你完全信任前提下可以这么做:

  • 使用 exec 或 eval 执行从外部源(如 Redis)读取的代码极其危险,因为这可能导致代码注入和安全漏洞。
  • 如果必须执行从外部存储读取的代码,请确保代码来源是可信的,并且执行环境是安全的。
  • 考虑使用其他方法来存储和执行代码,例如将代码存储在文件系统中,并通过安全的 API 调用来触发代码执行。

在大多数情况下是不会将可执行代码存储在 Redis 中。如果确实需要远程执行代码,通常会有一个专门的服务或 API 来处理代码的执行。

下表列出了 redis 事务的相关命令:

序号命令及描述
1DISCARD
取消事务,放弃执行事务块内的所有命令。
2EXEC
执行所有事务块内的命令。
3MULTI
标记一个事务块的开始。
4UNWATCH
取消 WATCH 命令对所有 key 的监视。
5WATCH key [key ...]
监视一个(或多个) key ,如果在事务执行之前这个(或这些) key 被其他命令所改动,那么事务将被打断。

 redis还有:

fastapi是一个用于构建 API 的现代、快速(高性能)的 web 框架,专为在 Python 中构建 RESTful API 而设计。

FastAPI 使用 Python 3.8+ 并基于标准的 Python 类型提示。

FastAPI 建立在 Starlette 和 Pydantic 之上,利用类型提示进行数据处理,并自动生成API文档。

FastAPI 于 2018 年 12 月 5 日发布第一版本,以其易用性、速度和稳健性在开发者中间迅速流行起来。FastAPI 支持异步编程,可在生产环境中运行。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/311814.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NTC热敏电阻采集温度-单片机通用模板

NTC热敏电阻采集温度-单片机通用模板 一、NTC热敏电阻转换温度的原理二、AT104Tem.c的实现三、AT104Tem.h的实现 一、NTC热敏电阻转换温度的原理 ①NTC热敏电阻会随着温度的升高,电阻值R逐渐降低;②硬件搭建电阻分压电路采集ADC逆推热敏电阻当前的阻值&…

ArcGIS加载的各类地图怎么去除服务署名水印

昨天介绍的: 一套图源搞定!清新规划底图、影像图、境界、海洋、地形阴影图、导航图-CSDN博客文章浏览阅读373次,点赞7次,收藏11次。一体化集成在一起的各类型图源,比如包括影像、清新的出图底图、地形、地图阴影、道路…

如何在PPT中获得网页般的互动效果

如何在PPT中获得网页般的互动效果 效果可以看视频 PPT中插入网页有互动效果 当然了,获得网页般的互动效果,最简单的方法就是在 PPT 中插入网页呀。 那么如何插入呢? 接下来为你讲解如何获得(此方法在 PowerPoint中行得通&#…

Modality-Aware Contrastive Instance Learning with Self-Distillation ... 论文阅读

Modality-Aware Contrastive Instance Learning with Self-Distillation for Weakly-Supervised Audio-Visual Violence Detection 论文阅读 ABSTRACT1 INTRODUCTION2 RELATEDWORKS2.1 Weakly-Supervised Violence Detection2.2 Contrastive Learning2.3 Cross-Modality Knowle…

Yolo-world+Python-OpenCV之摄像头视频实时目标检测

上一次介绍了如何使用最基本的 Yolo-word来做检测,现在我们在加opencv来做个实时检测的例子 基本思路 1、读取离线视频流 2、将视频帧给yolo识别 3、根据识别结果 对视频进行绘制边框、加文字之类的 完整代码如下: import datetimefrom ultralytics …

excel 无法正确处理 1900-03-01 前的日期

问题由来:excel 用公式 TEXT(A1,"yyyy-mm-dd") 转日期时,当A1 的值等于59 的时候,返回值是1900-02-28;当A1 的值等于61 的时候,返回值是1900-03-01;那么当 A1的值为 60 的时候,返回值…

权限管理Ranger详解

文章目录 一、Ranger概述与安装1、Ranger概述1.1 Ranger介绍1.2 Ranger的目标1.3 Ranger支持的框架1.4 Ranger的架构1.5 Ranger的工作原理 2、Ranger安装2.1 创建系统用户和Kerberos主体2.2 数据库环境准备2.3 安装RangerAdmin2.4 启动RangerAdmin 二、Ranger简单使用1、安装 R…

PDF文档电子签名怎么做?

如何确保电子文档的签署具有公信力和法律效力,防止伪造和假冒签名等问题,是电子文档无纸化应用面临的重要挑战。本文将详细介绍PDF文档电子签名的概念、重要性、实施步骤以及相关的法律背景,帮助用户理解并有效应用PDF文档电子签名技术。 1.…

# RAG | Langchain # Langchain RAG:打造Markdown文件的结构化分割解决方案

【文章简介】 在信息技术的现代背景下,高效地处理和分析文本数据对于知识获取和决策支持至关重要。Markdown文件因其易读性和高效性,在文档编写和知识共享中占据了重要地位。然而,传统的文本处理方法往往忽视了Markdown的结构化特性&#xff…

深度学习 Lecture 7 迁移学习、精确率、召回率和F1评分

一、迁移学习(Transfer learning) 用来自不同任务的数据来帮助我解决当前任务。 场景:比如现在我想要识别从0到9度手写数字,但是我没有那么多手写数字的带标签数据。我可以找到一个很大的数据集,比如有一百万张图片的猫、狗、汽…

卷积神经网络的结构组成与解释(详细介绍)

文章目录 前言 1、卷积层 2、激活层 3、BN层 4、池化层 5、FC层(全连接层) 6、损失层 7、Dropout层 8、优化器 9、学习率 10、卷积神经网络的常见结构 前言 卷积神经网络是以卷积层为主的深层网络结构,网络结构包括有卷积层、激活层、BN层、…

专业140+总410+国防科技大学831信号与系统考研经验国防科大电子信息与通信,真题,大纲,参考书。

应群里同学要求,总结一下我自己的复习经历,希望对大家有所借鉴,报考国防科技大学,专业课831信号与系统140,总分410,大家以前一直认为国防科技大学时军校,从而很少关注这所军中清华,现…

【C++】哈希一

这篇博客要说的是哈希算法,哈希又称为散列,它是将存储的值和存储的位置建立起关联关系的一种算法,或者说是一种将任意长度的数据映射为固定长度的输出的算法。 什么意思呢?我们来看一个例子:比如说我们要存储1&#xf…

Github 2024-04-12 开源项目日报 Top10

根据Github Trendings的统计,今日(2024-04-12统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目6TypeScript项目2Cuda项目1C++项目1C项目1HTML项目1Jupyter Notebook项目1JavaScript项目1Python - 100天从新手到大师 创建周期:22…

pytorch 今日小知识3——nn.MaxPool3d 、nn.AdaptiveAvgPool3d、nn.ModuleList

MaxPool3d — PyTorch 2.2 documentation 假设输入维度(1,2,3,4,4) maxpool torch.nn.MaxPool3d(kernel_size(2, 2, 2), stride(2, 2, 2), padding(1, 0, 0))F 维的 kernel_size 为 2,说明在 F 维的覆盖的 frame 数为 2,也就是…

机器学习实验------决策树

第1关:什么是决策树 任务描述 本关任务:根据本节课所学知识完成本关所设置的选择题。 第2关:信息熵与信息增益 任务描述 本关任务:掌握什么是信息增益,完成计算信息增益的程序设计。 import numpy as npdef calcIn…

【机器学习】knn邻近算法解决实际问题

采用kNN算法回答红色字体提出的问题。要求写出算法过程和预测结果。 KNN原理 KNN(K-最近邻)算法是一个简单直观的分类方法。它的核心思想是“物以类聚”,即一个样本的类别通常由其周围最近的几个邻居决定。这里的“最近”是通过计算样本间的…

智能零售:引领购物新时代

智能零售通过整合人工智能、物联网、大数据和机器学习等技术,正在彻底改变传统的购物模式,为消费者和零售商提供前所未有的效率和个性化体验。 智能零售利用消费者数据分析来提供个性化的购物推荐。无论是在线平台或是实体店内,智能系统都能…

RabbitMQ - Spring boot 整合 RabbitMQ

一、RabbitMQ 1、RabbitMQ 使用场景 1.1、服务解耦 假设有这样一个场景, 服务A产生数据, 而服务B,C,D需要这些数据, 那么我们可以在A服务中直接调用B,C,D服务,把数据传递到下游服务即可 但是,随着我们的应用规模不断扩大,会有更多的服务需要A的数据,如果有几十甚至几百个下…

Gitea是一个开源、轻量级的自托管Git解决方案

Gitea介绍 Gitea是一个由Go语言编写的、轻量级的、自托管的Git解决方案,类似于GitHub、GitLab等平台。它是用Go语言编写的开源软件,提供了Git版本控制系统的基本功能,包括代码托管、问题跟踪、代码审查、Wiki等。Gitea的设计目标是简单易用、…