错误分析 (Machine Learning研习十九)

错误分析

您将探索数据准备选项,尝试多个模型,筛选出最佳模型,使用 Grid SearchCV微调其超参数,并尽可能实现自动化。在此,我们假设您已经找到了一个有前途的模型,并希望找到改进它的方法。其中一种方法就是分析它所犯的错误类型。

首先,查看混淆矩阵。为此,首先需要使用 cross_val_predict() 函数进行预测;然后可以像之前一样,将标签和预测值传递给 confusion_matrix()函数。不过,由于现在有 10 个类别而不是 2 个,混淆矩阵将包含大量数字,可能难以读取。

混淆矩阵的彩色图更容易分析。要绘制这样的图表,请使用ConfusionMatrixDisplay.from_predictions() 函数,如下所示:

from sklearn.metrics import ConfusionMatrixDisplayy_train_pred = cross_val_predict(sgd_clf, X_train_scaled, y_train, cv=3) ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred) plt.show() 

这就产生了 图1 中的左图。这个混淆矩阵看起来相当不错:大多数图像都在主对角线上,这意味着它们被正确分类了。请注意,对角线上第 5 行第 5 列的单元格看起来比其他数字略暗。这可能是因为模型对 5 的错误较多,也可能是因为数据集中 5 的数量比其他数字少。这就是为什么要对混淆矩阵进行归一化处理,将每个值除以相应(真实)类别中的图像总数(即除以行的总和)。只需设置 normalize="true "即可。我们还可以指定 val ues_format=".0%"参数来显示不带小数点的百分比。下面的代码将生成 图1 右侧的图表:

ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred,                                        normalize="true", values_format=".0%") plt.show() 

在这里插入图片描述

现在我们不难发现,只有 82% 的 5 图像被正确分类。模型在处理 5 的图像时最常见的错误是将其误判为 8:在所有 5 的图像中,有 10%的图像被误判为 8。但只有 2% 的 8 被误判为 5;混淆矩阵通常不是对称的!如果你仔细观察,就会发现很多数字都被错误地分类为 8,但从这张图上并不能一眼看出。如果想让错误更明显,可以尝试将正确预测的权重设为零。下面的代码就是这样做的,并生成了图2 左侧的图表:

sample_weight = (y_train_pred != y_train) ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred,                                        sample_weight=sample_weight,                                        normalize="true", values_format=".0%") plt.show()

在这里插入图片描述

现在你可以更清楚地看到分类器所犯的错误类型了。第 8 类的那一列现在非常明亮,这证明很多图像都被误判为第 8 类。事实上,这几乎是所有类别中最常见的错误分类。但是,在解释图表中的百分比时一定要小心:请记住,我们已经排除了正确的预测结果。例如,第 7 行第 9 列中的 36% 并不意味着所有 7 的图像中有 36% 被错误分类为 9。而是指模型对 7 的图像所做的错误分类中,有 36% 被误判为 9。实际上,只有 3% 的 7 图像被错误分类为 9,如图 1 右图所示。

也可以按列而不是按行对混淆矩阵进行归一化处理:如果设置 normalize="pred",就会得到 图2 右侧的图表。例如,您可以看到 56% 被误判的 7 其实是 9。

分析混淆矩阵通常能让你深入了解改进分类器的方法。通过观察这些图,您似乎应该把精力花在减少错误的 8 上。例如,你可以尝试收集更多看起来像 8 但不是 8 的数字的训练数据,这样分类器就能学会将它们与真正的 8 区分开来。或者,你也可以设计新的特征来帮助分类器–例如,编写一种算法来计算闭合循环的数量(例如,8 有两个,6 有一个,5 没有)。或者,你也可以对图像进行预处理(例如,使用 Scikit-ImagePillow OpenCV),使某些模式(如闭合循环)更加突出。

分析单个错误也是深入了解分类器工作情况和失败原因的好方法。例如,让我们以混淆矩阵的形式绘制 3 和 5 的示例(图 3):

cl_a, cl_b = '3', '5' 
X_aa = X_train[(y_train == cl_a) & (y_train_pred == cl_a)] 
X_ab = X_train[(y_train == cl_a) & (y_train_pred == cl_b)] 
X_ba = X_train[(y_train == cl_b) & (y_train_pred == cl_a)] 
X_bb = X_train[(y_train == cl_b) & (y_train_pred == cl_b)] 
[...]  # plot all images in X_aa, X_ab, X_ba, X_bb in a confusion matrix style

在这里插入图片描述

正如您所看到的,分类器弄错的一些数字(即左下角和右上角的数字块)写得非常糟糕,甚至连人都很难对它们进行分类。不过,大多数分类错误的图像在我们看来都是显而易见的错误。我们可能很难理解分类器为什么会犯这样的错误,但请记住,人脑是一个神奇的模式识别系统,我们的视觉系统会在任何信息到达我们的意识之前进行大量复杂的预处理。因此,这项任务感觉简单并不意味着它就是简单的。回想一下,我们使用的是一个简单的 SGDClassifier,它只是一个线性模型:它所做的只是为每个像素分配一个类别权重,当它看到一个新图像时,它只是将加权像素强度相加,得到每个类别的分数。由于 3 和 5 只相差几个像素,这个模型很容易将它们混淆。

3 和 5 的主要区别在于连接顶线和底弧的小线的位置。如果您画的 3 的交界处稍微向左移动,分类器可能会将其归类为 5,反之亦然。换句话说,这种分类器对图像移动和旋转相当敏感。减少 3/5 混淆的一种方法是对图像进行预处理,以确保图像居中且没有过度旋转。然而,这并不容易,因为这需要预测每幅图像的正确旋转。一种简单得多的方法是用训练图像的轻微移动和旋转变体来增加训练集。这将迫使模型学会对这种变化有更大的容忍度。这就是所谓的数据增强

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/312160.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第九届少儿模特明星盛典 全球赛推广大使『武家翔』精彩回顾

2024年1月30日-2月1日,魔都上海迎来了龙年第一场“少儿形体行业美育春晚”!由IPA模特委员会主办的第九届少儿模特明星盛典全球总决赛圆满收官!近2000名少儿模特选手从五湖四海而来,决战寒假这场高水准,高人气&#xff…

uni-app学习

目录 一、安装HBuilderX 二、创第一个uni-app 三、项目目录和文件作用 四、全局配置文件(pages.json) 4.1 globalStyle(全局样式) 导航栏:背景颜色、标题颜色、标题文本 导航栏:开启下拉刷新、下拉背…

Axure实现导航栏的展开与收缩

Axure实现导航栏的展开与收缩 一、概要介绍二、设计思路三、Axure制作导航栏四、技术细节五、小结 一、概要介绍 使用场景一般是B端后台系统需要以导航栏的展开与收缩实现原型的动态交互,主要使用区域是左边或者顶部的导航栏展开与收缩,同一级导航下的小…

ActiveMQ 01 消息中间件jmsMQ

消息中间件之ActiveMQ 01 什么是JMS MQ 全称:Java MessageService 中文:Java 消息服务。 JMS 是 Java 的一套 API 标准,最初的目的是为了使应用程序能够访问现有的 MOM 系 统(MOM 是 MessageOriented Middleware 的英文缩写&am…

Servlet测试1

通过按钮提交get,post请求,并且后端响应数据,显示到前端 当点击get按钮时 是发起Get请求 后端接收到Get请求后,把数据写入到body内 当点击pst按钮时 是发起Post请求 后端接收到Post请求后,把数据写入到body内 之后前端就从bod…

Python 物联网入门指南(七)

原文:zh.annas-archive.org/md5/4fe4273add75ed738e70f3d05e428b06 译者:飞龙 协议:CC BY-NC-SA 4.0 第二十四章:基本开关 到目前为止一定是一段史诗般的旅程!回想一下你开始阅读这本书的时候,你是否曾想象…

HarmonyOS开发实战:【亲子拼图游戏】

概述 本篇Codelab是基于TS扩展的声明式开发范式编程语言编写的一个分布式益智拼图游戏,可以两台设备同时开启一局拼图游戏,每次点击九宫格内的图片,都会同步更新两台设备的图片位置。效果图如下: 说明: 本示例涉及使…

项目管理利器 Git

一、序言 今天聊聊 Git。 二、开发的问题 在开发项目时,我们的代码都是直接放在本地的机器上的。如果本地机器出现了问题,怎么办?在企业中,开发项目都是团队协作,一个团队共同维护一个项目该如何处理?团…

C++11(下篇)

文章目录 C111. 模版的可变参数1.1 模版参数包的使用 2. lambda表达式2.1 Lambda表达式语法捕获列表说明 2.2 lambda的底层 3. 包装器3.1 function包装器3.2 bind 4. 线程库4.1 thread类4.2 mutex类4.3 atomic类4.4 condition_variable类 C11 1. 模版的可变参数 C11支持模版的…

python 列表对象函数

对象函数必须通过一个对象调用。 列表名.函数名() append() 将某一个元素对象添加在列表的表尾 如果添加的是其他的序列,该序列也会被看成是一个数据对象 count() 统计列表当中 某一个元素出现的次数 extend() 在当前列表中 将传入的其他序列的元素添加在表尾…

自定义类似微信效果Preference

1. 为自定义Preference 添加背景&#xff1a;custom_preference_background.xml <?xml version"1.0" encoding"utf-8"?> <selector xmlns:android"http://schemas.android.com/apk/res/android"><item><shape android:s…

vue:如何通过两个点的经纬度进行距离的计算(很简单)

首先假设从api获取到了自己的纬经度和别人的纬经度 首先有一个概念需要说一下 地球半径 由于地球不是一个完美的球体&#xff0c;所以并不能用一个特别准确的值来表示地球的实际半径&#xff0c;不过由于地球的形状很接近球体&#xff0c;用[6357km] 到 [6378km]的范围值可以…

Python-VBA函数之旅-eval函数

目录 一、eval函数的常见应用场景&#xff1a; 二、eval函数安全使用注意事项&#xff1a; 三、eval函数与exec函数对比分析&#xff1a; 1、eval函数&#xff1a; 1-1、Python&#xff1a; 1-2、VBA&#xff1a; 2、相关文章&#xff1a; 个人主页&#xff1a;ht…

RAG (Retrieval Augmented Generation) 结合 LlamaIndex、Elasticsearch 和 Mistral

作者&#xff1a;Srikanth Manvi 在这篇文章中&#xff0c;我们将讨论如何使用 RAG 技术&#xff08;检索增强生成&#xff09;和 Elasticsearch 作为向量数据库来实现问答体验。我们将使用 LlamaIndex 和本地运行的 Mistral LLM。 在开始之前&#xff0c;我们将先了解一些术…

文献学习-37-动态场景中任意形状针的单目 3D 位姿估计:一种高效的视觉学习和几何建模方法

On the Monocular 3D Pose Estimation for Arbitrary Shaped Needle in Dynamic Scenes: An Efficient Visual Learning and Geometry Modeling Approach Authors: Bin Li,† , Student Member, IEEE, Bo Lu,† , Member, IEEE, Hongbin Lin, Yaxiang Wang, Fangxun Zhong, Me…

OpenCV基本图像处理操作(六)——直方图与模版匹配

直方图 cv2.calcHist(images,channels,mask,histSize,ranges) images: 原图像图像格式为 uint8 或 float32。当传入函数时应 用中括号 [] 括来例如[img]channels: 同样用中括号括来它会告函数我们统幅图 像的直方图。如果入图像是灰度图它的值就是 [0]如果是彩色图像 的传入的…

Golang | Leetcode Golang题解之第27题移除元素

题目&#xff1a; 题解&#xff1a; func removeElement(nums []int, val int) int {left, right : 0, len(nums)for left < right {if nums[left] val {nums[left] nums[right-1]right--} else {left}}return left }

AI智能体技术突破:引领科技新浪潮

AI智能体技术突破&#xff1a;引领科技新浪潮 基于大模型的 AI Agent 工作流基于大模型的 AI Agent 工作流效果AI Agent 的四种设计模式Reflection 反思设计模式Tool use 工具使用设计模式Planning 规划设计模式Multiagent collaboration 多智能体协作设计模式 吴恩达在红杉美国…

原始部落版本潮玩宇宙小程序定制大逃杀游戏APP开发H5游戏

原始部落版本潮玩宇宙小程序定制大逃杀游戏APP开发H5游戏 潮玩宇宙小程序定制大逃杀游戏APP开发H5游戏 潮玩宇宙大逃杀小游戏模块成品源码&#xff0c;可嵌入任何平台系统&#xff0c;增加用户粘性&#xff0c;消除泡沫&#xff0c;短视频直播引流。 玩家选择一间房间躲避杀手…

网盘——添加好友

关于添加好友&#xff0c;过程如下&#xff1a; A、首先客户端A发送加好友的请求&#xff0c;发送的信息包括双方的用户名 B、当服务器收到请求之后&#xff0c;服务器将数据库中在线用户查找出来&#xff0c;如果客户端B已经是你的好友了&#xff0c;服务器告诉客户端A他已经…