OpenCV基本图像处理操作(六)——直方图与模版匹配

直方图

在这里插入图片描述

cv2.calcHist(images,channels,mask,histSize,ranges)
  • images: 原图像图像格式为 uint8 或 float32。当传入函数时应 用中括号 [] 括来例如[img]
  • channels: 同样用中括号括来它会告函数我们统幅图 像的直方图。如果入图像是灰度图它的值就是 [0]如果是彩色图像 的传入的参数可以是 [0][1][2] 它们分别对应着 BGR。
  • mask: 掩模图像。统整幅图像的直方图就把它为 None。但是如 果你想统图像某一分的直方图的你就制作一个掩模图像并 使用它。
  • histSize:BIN 的数目。也应用中括号括来
  • ranges: 像素值范围常为 [0256]
import cv2 #opencv读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt#Matplotlib是RGB
def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()
img = cv2.imread('cat.jpg',0) #0表示灰度图
hist = cv2.calcHist([img],[0],None,[256],[0,256])
hist.shape
plt.hist(img.ravel(),256); 
plt.show()

在这里插入图片描述

bgr三分量显示
img = cv2.imread('cat.jpg') 
color = ('b','g','r')
for i,col in enumerate(color): histr = cv2.calcHist([img],[i],None,[256],[0,256]) plt.plot(histr,color = col) plt.xlim([0,256]) 

在这里插入图片描述

mask 操作
# 创建mast
mask = np.zeros(img.shape[:2], np.uint8)
print (mask.shape)
mask[100:300, 100:400] = 255
cv_show(mask,'mask')

在这里插入图片描述

img = cv2.imread('cat.jpg', 0)
cv_show(img,'img')

在这里插入图片描述

masked_img = cv2.bitwise_and(img, img, mask=mask)#与操作
cv_show(masked_img,'masked_img')

在这里插入图片描述

plt.subplot(221), plt.imshow(img, 'gray')
plt.subplot(222), plt.imshow(mask, 'gray')
plt.subplot(223), plt.imshow(masked_img, 'gray')
plt.subplot(224), plt.plot(hist_full), plt.plot(hist_mask)
plt.xlim([0, 256])
plt.show()

在这里插入图片描述

直方图均衡化

在这里插入图片描述

img = cv2.imread('clahe.jpg',0) #0表示灰度图 #clahe
plt.hist(img.ravel(),256); 
plt.show()

在这里插入图片描述

equ = cv2.equalizeHist(img) 
plt.hist(equ.ravel(),256)
plt.show()

在这里插入图片描述

自适应直方图均衡化

clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) 
res_clahe = clahe.apply(img)
res = np.hstack((img,equ,res_clahe))
cv_show(res,'res')

在这里插入图片描述

模版匹配

模板匹配和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图形是AxB大小,而模板是axb大小,则输出结果的矩阵是(A-a+1)x(B-b+1)

# 模板匹配
img = cv2.imread('lena.jpg', 0)
template = cv2.imread('face.jpg', 0)
h, w = template.shape[:2] 
  • TM_SQDIFF:计算平方不同,计算出来的值越小,越相关
  • TM_CCORR:计算相关性,计算出来的值越大,越相关
  • TM_CCOEFF:计算相关系数,计算出来的值越大,越相关
  • TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关
  • TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关
  • TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关
methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR','cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
res = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
for meth in methods:img2 = img.copy()# 匹配方法的真值method = eval(meth)print (method)res = cv2.matchTemplate(img, template, method)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)# 如果是平方差匹配TM_SQDIFF或归一化平方差匹配TM_SQDIFF_NORMED,取最小值if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:top_left = min_lo   celse:top_left = max_locbottom_right = (top_left[0] + w, top_left[1] + h)# 画矩形cv2.rectangle(img2, top_left, bottom_right, 255, 2)plt.subplot(121), plt.imshow(res, cmap='gray')plt.xticks([]), plt.yticks([])  # 隐藏坐标轴plt.subplot(122), plt.imshow(img2, cmap='gray')plt.xticks([]), plt.yticks([])plt.suptitle(meth)plt.show()

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

匹配多个对象
img_rgb = cv2.imread('mario.jpg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('mario_coin.jpg', 0)
h, w = template.shape[:2]res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.8
# 取匹配程度大于%80的坐标
loc = np.where(res >= threshold)
for pt in zip(*loc[::-1]):  # *号表示可选参数bottom_right = (pt[0] + w, pt[1] + h)cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2)cv2.imshow('img_rgb', img_rgb)
cv2.waitKey(0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/312138.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Golang | Leetcode Golang题解之第27题移除元素

题目&#xff1a; 题解&#xff1a; func removeElement(nums []int, val int) int {left, right : 0, len(nums)for left < right {if nums[left] val {nums[left] nums[right-1]right--} else {left}}return left }

AI智能体技术突破:引领科技新浪潮

AI智能体技术突破&#xff1a;引领科技新浪潮 基于大模型的 AI Agent 工作流基于大模型的 AI Agent 工作流效果AI Agent 的四种设计模式Reflection 反思设计模式Tool use 工具使用设计模式Planning 规划设计模式Multiagent collaboration 多智能体协作设计模式 吴恩达在红杉美国…

原始部落版本潮玩宇宙小程序定制大逃杀游戏APP开发H5游戏

原始部落版本潮玩宇宙小程序定制大逃杀游戏APP开发H5游戏 潮玩宇宙小程序定制大逃杀游戏APP开发H5游戏 潮玩宇宙大逃杀小游戏模块成品源码&#xff0c;可嵌入任何平台系统&#xff0c;增加用户粘性&#xff0c;消除泡沫&#xff0c;短视频直播引流。 玩家选择一间房间躲避杀手…

网盘——添加好友

关于添加好友&#xff0c;过程如下&#xff1a; A、首先客户端A发送加好友的请求&#xff0c;发送的信息包括双方的用户名 B、当服务器收到请求之后&#xff0c;服务器将数据库中在线用户查找出来&#xff0c;如果客户端B已经是你的好友了&#xff0c;服务器告诉客户端A他已经…

Adobe AE(After Effects)2021下载地址及安装教程

Adobe After Effects是一款专业级别的视觉效果和动态图形处理软件&#xff0c;由Adobe Systems开发。它被广泛用于电影、电视节目、广告和其他多媒体项目的制作。 After Effects提供了强大的合成和特效功能&#xff0c;可以让用户创建出令人惊艳的动态图形和视觉效果。用户可以…

定制k8s域名解析------CoreDns配置实验

定制k8s域名解析------CoreDns配置实验 1. 需求 k8s集群内通过CoreDns互相解析service名. 同时pana.cn域为外部dns解析,需要通过指定dns服务器进行解析 再有3个服务器,需要使用A记录进行解析 2. K8s外DNS服务器 查看解析文件 tail -3 /var/named/pana.cn.zone 解析内容 ww…

第11章 数据仓库和数据智能知识点梳理

第11章 数据仓库和数据智能知识点梳理&#xff08;附带页码&#xff09; ◼ 数据仓库&#xff08;Data Warehouse&#xff0c;DW&#xff09;&#xff1a;始于 20 世纪 80 年代&#xff0c;发展于 20 世纪 90 年代&#xff0c;后与商务智能&#xff08;Business Inteligence,BI…

Servlet-Filter实现反爬虫

以前用DotNetCore实现过反爬虫功能。在tomcat里面可以利用Servlet的Filter类实现请求的控制来达到反爬虫功能&#xff0c;进而增强JRT的web安全。 实现黑名单过滤器&#xff0c;对在黑名单列表的IP的所有请求都跳转到警告页面&#xff0c;业务各种请求自行定义加入黑名单 /* …

OpenHarmony实战开发-如何使用ArkUIstack 组件实现多层级轮播图。

介绍 本示例介绍使用ArkUIstack 组件实现多层级轮播图。该场景多用于购物、资讯类应用。 效果图预览 使用说明 1.加载完成后显示轮播图可以左右滑动。 实现思路 1.通过stack和offsetx实现多层级堆叠。 Stack() {LazyForEach(this.swiperDataSource, (item: SwiperData, i…

彩虹聚合登录系统源码开心版 一站式社会化账号登录系统

本文来自&#xff1a;彩虹聚合登录系统源码开心版 一站式社会化账号登录系统 - 源码1688 应用介绍 简介&#xff1a; 彩虹聚合登录系统源码开心版 一站式社会化账号登录系统 彩虹聚合登录是彩虹旗下的社交账号聚合登录系统&#xff0c;为网站提供一站式社交账号登录选项&…

【Redis 神秘大陆】006 灾备方案

六、Redis 灾备方案 6.1 存储方案 6.1.1 基础对比 RDB持久化AOF持久化原理周期性fork子进程生成持久化文件每次写入记录命令日志文件类型二进制dump快照文件文本appendonly日志文件触发条件默认超过300s间隔且有1s内超过1kb数据变更永久性每秒fsync一次文件位置配置文件中指…

强强联手|AI赋能智能工业化,探索AI在工业领域的应用

随着人工智能&#xff08;AI&#xff09;技术的不断发展和应用&#xff0c;AI在各个领域展现出了巨大的潜力和价值。在工业领域&#xff0c;AI的应用也越来越受到关注。AI具备了丰富的功能和强大的性能&#xff0c;为工业领域的发展带来了巨大的机遇和挑战。 YesPMP是专业的互联…

【Java NIO】那NIO为什么速度快?

Java IO在工作中其实不常用到&#xff0c;更别提NIO了。但NIO却是高效操作I/O流的必备技能&#xff0c;如顶级开源项目Kafka、Netty、RocketMQ等都采用了NIO技术&#xff0c;NIO也是大多数面试官必考的体系知识。虽然骨头有点难啃&#xff0c;但还是要慢慢消耗知识、学以致用哈…

PDF.js介绍以及使用

这里写目录标题 下载放入项目内加载pdf文件其他问题加载远程文件跨域中文语言 下载 官网地址 下载最新版浏览器版本。 放入项目内 我这是uniapp项目 放入了 static vue 项目可以放入public内 build 是源码库 web 内是写好的一个类似pdf编辑器的完整项目 加载pdf文件 // 组件…

ArcGIS三维景观分层显示

今天将向大家介绍的事在ArcGIS中如何创建多层三维显示。 地表为影像的 地表为地形晕渲的 在土壤分层、油气分层等都有着十分重要的应用。下面我们具体来看看实现过程 一、 准备数据及提取栅格范围 我们这次准备的数据是之前GIS100例-30讲的案例数据。《ArcGIS三维影像图剖面图…

LeetCode 每日一题 Day 123-136

1379. 找出克隆二叉树中的相同节点 给你两棵二叉树&#xff0c;原始树 original 和克隆树 cloned&#xff0c;以及一个位于原始树 original 中的目标节点 target。 其中&#xff0c;克隆树 cloned 是原始树 original 的一个 副本 。 请找出在树 cloned 中&#xff0c;与 tar…

【静态分析】软件分析课程实验-前置准备

课程&#xff1a;南京大学的《软件分析》课程 平台&#xff1a;Tai-e&#xff08;太阿&#xff09;实验作业平台 1. 实验概述 Tai-e 是一个分析 Java 程序的静态程序分析框架&#xff0c;相比于已有的知名静态程序分析框架&#xff08;如 Soot、Wala 等&#xff09;&#xf…

女上司问我:误删除PG百万条数据,可以闪回吗?

作者&#xff1a;IT邦德 中国DBA联盟(ACDU)成员&#xff0c;10余年DBA工作经验 擅长主流数据Oracle、MySQL、PG、openGauss运维 备份恢复&#xff0c;安装迁移&#xff0c;性能优化、故障应急处理等可提供技术业务&#xff1a; 1.DB故障处理/疑难杂症远程支援 2.Mysql/PG/Oracl…

字体反爬积累知识

目录 一、什么是字体反扒 二、Unicode编码 三、利用font包获取映射关系 一、什么是字体反扒 字体反爬是一种常见的反爬虫技术&#xff0c;它通过将网页中的文本内容转换为特殊的字体格式来防止爬虫程序直接获取和解析文本信息。字体反爬的原理是将常规的字符映射到特殊的字…

服务器数据恢复—xfs文件系统节点、目录项丢失的数据恢复案例

服务器数据恢复环境&#xff1a; EMC某型号存储&#xff0c;该存储内有一组由12块磁盘组建的raid5阵列&#xff0c;划分了两个lun。 服务器故障&#xff1a; 管理员为服务器重装操作系统后&#xff0c;发现服务器的磁盘分区发生改变&#xff0c;原来的sdc3分区丢失。由于该分区…