python使用opencv对图像的基本操作(2)

13.对多个像素点进行操作,使用数组切片方式访问

img[i,:] = img[j,:]
#将第j行的数值赋值给第i行
img[-2,:]或img[-2]
#倒数第二行
img[:,-1]
#最后一列
img[50:100,50:100]
#50-100行,50-100列(不包括第100行和第100列)
img[:100,:50].sum()
#计算前100行、前50列所有的数值的和
img[i].mean()
#第i行所有数值的平均值

对多个像素点进行操作,特别是图像处理领域,使用数组切片方式访问是一种非常高效的方法。数组切片允许开发者通过简单的语法获取数组中的一段连续元素,这些元素可以是一个像素点的颜色信息,例如在RGB图像中,一个像素点由红、绿、蓝三个颜色通道的值组成。
运行结果:

14.将图片进行二值化

二值化:是图像分割的一种最简单的方法。二值化可以把灰度图像转换成二值图像。把大于某个临界灰度值的像素灰度设为灰度极大值,把小于这个值的像素灰度设为灰度极小值,从而实现二值化。

from skimage import io,data,color
img = io.imread('lbxx.jpg')
img_gray=color.rgb2gray(img)    #将RGB图像转换为灰度图像
rows,cols=img_gray.shape
for i in range(rows):for j in range(cols):if (img_gray[i,j]<=0.5):  #128/255img_gray[i,j]=0else:img_gray[i,j]=1
io.imshow(img_gray)

运行结果:
在这里插入图片描述
注:color.rgb2gray: 这是 Scikit-image 库中 color 模块的一个函数,用于将RGB彩色图像转换为灰度图像。灰度图像是单通道的,每个像素的值代表该点的亮度,范围通常是0到1,其中0表示黑色,1表示白色,0.5表示灰色。

15.将图片进行归一化

归一化:图像归一化是指对图像进行了一系列标准的处理变换,使图像变换为一个固定标准形式的过程。

from skimage import exposure, io
# 读取图像
image = io.imread('lbxx.jpg')
# 归一化处理
normalized_image = exposure.rescale_intensity(image, in_range='image', out_range=(0, 0.4))
io.imshow(normalized_image)
io.show()

运行结果:
在这里插入图片描述
在这里插入图片描述
注:图片归一化是图像处理中的一种常见技术,它将图像的像素值映射到一个特定的范围,通常是[0, 1]或[-1, 1]。

15.1线性归一化

定义:是一种常见的数据预处理方法,也被称为 Min-Max 归一化。 它通过对原始数据进行线性变换,将其缩放到特定的范围内,常用的是将数据缩放到 [0, 1] 或 [-1, 1] 范围内。

image = io.imread('1.jpg')
normalized_image = (image - np.min(image)) / (np.max(image) - np.min(image))
io.imshow(normalized_image)

运行结果:
在这里插入图片描述
注:
线性归一化到[0, 1]区间:
normalized_image = (image - min_val) / (max_val - min_val)
线性归一化到[-1, 1]区间:
normalized_image = 2 * (image - min_val) / (max_val - min_val) - 1

15.2均值方差归一化:

将图像的像素值减去均值后,除以标准差,使得图像的均值为0,标准差为1。这样可以降低图像数据的偏差和差异性。

import numpy as np
# image为array类型,多少维度都无所谓,直接操作全部元素
image2 = (image - np.min(image)) / (np.max(image) - np.min(image))
io.imshow(image2)

运行结果:
在这里插入图片描述

15.3直方图均值化

通过重新分布图像像素的直方图,增强图像的对比度和细节。这在图像增强和图像识别等领域非常有用。

from skimage import exposure
equalized_image = exposure.equalize_hist(image)
io.imshow(equalized_image)

运行结果:

在这里插入图片描述

15.4.改变通道颜色

from skimage import io,data
img=io.imread('lbxx.jpg')
a = img[:,:,0] >170
img[a] = [0, 255, 0] #红色
io.imshow(img)

注:这段代码的作用是将图像中红色通道值大于170的像素染成绿色,并显示结果。
运行结果:
在这里插入图片描述

from skimage import io,data
img=io.imread('lbxx.jpg')
a = img[:,:,1] >170
img[a] = [0, 255, 0] #绿色
io.imshow(img)

运行结果:
在这里插入图片描述

from skimage import io,data
img=io.imread('lbxx.jpg')
a = img[:,:,2] >170
img[a] = [0, 0, 255] #蓝色
io.imshow(img)

运行结果:
在这里插入图片描述

16.图像数据类型及转换

在这里插入图片描述

16.1.查看数据类型

from skimage import io,data
img=io.imread('lbxx.jpg')
print(img.dtype.name)

注:print(img.dtype.name)这行代码打印出图像数组的数据类型,type.name则给出了这个数据类型的字符串表示;uint8,表示数组中的每个元素都是一个8位的无符号整数,取值范围从0到255。
运行结果:

在这里插入图片描述

16.2unit8转float

from skimage import io,data,img_as_float
import numpy as np
img=io.imread('lbxx.jpg')
print(img)
print(img.dtype.name)
dst=img_as_float(img)
print(dst.dtype.name)
print(dst)

注:dst=img_as_float(img)这行代码将图像转换为浮点数表示。这意味着图像中的每个像素值将被转换为0.0到1.0之间的浮点数。

运行结果:
在这里插入图片描述

16.3.float转uint8

from skimage import img_as_ubyte
import numpy as np
img = np.array([0, 0.5, 1], dtype=float)
print(img.dtype.name)
dst=img_as_ubyte(img)
print(dst.dtype.name)
print(dst)

注:img = np.array([0, 0.5, 1], dtype=float)这行代码创建一个包含三个浮点数的一维数组,这三个数分别是0, 0.5, 和1。数组的类型被指定为float。
运行结果:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/314223.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一、路由基础

1.路由协议的优先级 路由器分别定义了外部优先级和内部优先级&#xff08;越小越优&#xff09; 路由选择顺序&#xff1a;外部优先级>>内部优先级&#xff08;相同时&#xff09; ①外部优先级&#xff1a;用户可以手工为各路由协议配置的优先级 ②内部优先级&#xf…

uniapp制作分页查询功能

效果 代码 标签中 <uni-pagination change"pageChanged" :current"pageIndex" :pageSize"pageSize" :total"pageTotle" class"pagination" /> data中 pageIndex: 1, //分页器页码 pageSize: 10, //分页器每页显示…

Kubernetes学习-核心概念篇(一) 初识Kubernetes

&#x1f3f7;️个人主页&#xff1a;牵着猫散步的鼠鼠 &#x1f3f7;️系列专栏&#xff1a;Kubernetes渐进式学习-专栏 &#x1f3f7;️个人学习笔记&#xff0c;若有缺误&#xff0c;欢迎评论区指正 目录 1. 前言 2. 什么是Kubernetes 3. 为什么需要Kubernetes 3.1. 应…

Java面试八股文-2024

面试指南 TMD&#xff0c;一个后端为什么要了解那么多的知识&#xff0c;真是服了。啥啥都得了解 MySQL MySQL索引可能在以下几种情况下失效&#xff1a; 不遵循最左匹配原则&#xff1a;在联合索引中&#xff0c;如果没有使用索引的最左前缀&#xff0c;即查询条件中没有包含…

ArcGIS批量寻找图层要素中的空洞

空洞指的是图层中被要素包围所形成的没有被要素覆盖的地方&#xff0c;当图层要素数量非常庞大时&#xff0c;寻找这些空洞就不能一个一个的通过目测去寻找了&#xff0c;需要通过使用工具来实现这一目标。 一、【要素转线】工具 利用【要素转线】工具可以将空洞同图层要素处于…

实现SpringMVC底层机制(一)

文章目录 1.环境配置1.创建maven项目2.创建文件目录3.导入jar包 2.开发核心控制器文件目录1.流程图2.编写核心控制器SunDispatcherServlet.java3.类路径下编写spring配置文件sunspringmvc.xml4.配置中央控制器web.xml5.配置tomcat&#xff0c;完成测试1.配置发布方式2.配置热加…

URL路由基础与Django处理请求的过程分析

1. URL路由基础 对于高质量的Web应用来讲&#xff0c;使用简洁、优雅的URL设计模式非常有必要。Django框架允许设计人员自由地设计URL模式&#xff0c;而不用受到框架本身的约束。对于URL路由来讲&#xff0c;其主要实现了Web服务的入口。用户通过浏览器发送过来的任何请求&am…

HarmonyOS 鸿蒙下载三方依赖 ohpm环境搭建

前言 ohpm&#xff08;One Hundred Percent Mermaid &#xff09;是一个集成了Mermaid的命令工具&#xff0c;可以用于生成关系图、序列图、等各种图表。我们可以使用ohpm来生成漂亮且可读性强的图表。 本期教大家如何搭建ophm环境&#xff1a; 一、在DevEco Studio中&#…

Faust勒索病毒:了解变种faust,以及如何保护您的数据

导言&#xff1a; 近年来&#xff0c;网络安全问题日益严峻&#xff0c;其中勒索病毒成为了一种日益猖獗的威胁。在众多勒索病毒中&#xff0c;.faust勒索病毒以其高度的隐秘性和破坏性引起了广泛关注。本文91数据恢复将深入剖析.faust勒索病毒的威胁特点&#xff0c;并提出相…

Spark-机器学习(5)分类学习之朴素贝叶斯算法

在之前的文章中&#xff0c;我们学习了回归中的逻辑回归&#xff0c;并带来简单案例&#xff0c;学习用法&#xff0c;并带来了简单案例。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵…

新兴游戏引擎Godot vs. 主流游戏引擎Unity和虚幻引擎,以及版本控制工具Perforce Helix Core如何与其高效集成

游戏行业出现一个新生事物——Godot&#xff0c;一个免费且开源的2D和3D游戏引擎。曾经由Unity和虚幻引擎&#xff08;Unreal Engine&#xff09;等巨头主导的领域如今迎来了竞争对手。随着最近“独特”定价模式的变化&#xff0c;越来越多的独立开发者和小型开发团队倾向于选择…

牛客NC368 质数的计数【中等 基础数学,数论 C++/Java/Go/PHP】

题目 题目链接&#xff1a; https://www.nowcoder.com/practice/190167d1990442da9adb133980259a27 思路 判断x是否是质数&#xff1a;这是判断质数最好的代码了public boolean isPrime(int x){if(x 2 || x3) return true;if(x%6!1 && x%6!5) return false; //不在6倍…

前端到全栈进阶之“前端框架”

从前端入门到全栈-系列介绍 你会学到什么&#xff1f; 可能学不到什么东西&#xff0c;该系列是作者本人工作和学习积累&#xff0c;用于复习 系列介绍 现在的 Web 前端已经离不开 Node.js&#xff0c;我们广泛使用的 Babel、Webpack、工程化都是基于 Node 的&#xff0c;各…

Java学习路线及自我规划

荒废了一段时间&#xff0c;这段时间的总结开始了JavaWeb的学习但是困难重重&#xff0c;例如Maven&#xff0c;Vue的路由等&#xff0c;所以我反省了一段时间&#xff0c;因为基础薄弱&#xff0c;加之学习的资源是速成视频&#xff0c;导致大厦将倾的局面&#xff08;也算不上…

大模型咨询培训老师叶梓:利用知识图谱和Llama-Index增强大模型应用

大模型&#xff08;LLMs&#xff09;在自然语言处理领域取得了显著成就&#xff0c;但它们有时会产生不准确或不一致的信息&#xff0c;这种现象被称为“幻觉”。为了提高LLMs的准确性和可靠性&#xff0c;可以借助外部知识源&#xff0c;如知识图谱。那么我们如何通过Llama-In…

面试:finalize

一、概述 将资源释放和清理放在finalize方法中非常不好&#xff0c;非常影响性能&#xff0c;严重时甚至会引起OOM&#xff08;Out Of Memory&#xff09;&#xff0c;从Java9开始就被标注为Deprecated&#xff0c;不建议被使用了。 二、两个重要的队列 1、unfinalized 队列 当…

分享一些实用的工具

1、amCharts5&#xff1a;模拟航线飞行/业务分布图/k线/数据分析/地图等 网址&#xff1a; JavaScript mapping library: amCharts 5https://www.amcharts.com/javascript-maps/ Demo地址&#xff1a;Chart Demos - amChartshttps://www.amcharts.com/demos/#maps 他分为amC…

不同技术实现鼠标滚动图片的放大缩小

摘要&#xff1a; 最近弄PC端的需求时&#xff0c;要求在layui技术下实现鼠标滚动图片的放大缩小的功能&#xff01;下面来总结一下不同框架剩下这功能&#xff01; layui: 看了一下layui文档&#xff0c;其实这有自带的组件的&#xff01;但是又版本要求的!并且layui的官方文档…

无人驾驶 自动驾驶汽车 环境感知 精准定位 决策与规划 控制与执行 高精地图与车联网V2X 深度神经网络学习 深度强化学习 Apollo

无人驾驶 百度apollo课程 1-5 百度apollo课程 6-8 七月在线 无人驾驶系列知识入门到提高 当今,自动驾驶技术已经成为整个汽车产业的最新发展方向。应用自动驾驶技术可以全面提升汽车驾驶的安全性、舒适性,满足更高层次的市场需求等。自动驾驶技术得益于人工智能技术的应用…

Linux网络编程---多进/线程并发服务器

一、多进程并发服务器 实现一个服务器可以连接多个客户端&#xff0c;每当accept函数等待到客户端进行连接时 就创建一个子进程 思路分析&#xff1a; 核心思路&#xff1a;让accept循环阻塞等待客户端&#xff0c;每当有客户端连接时就fork子进程&#xff0c;让子进程去和客户…