Xline中区间树实现小结

Table of Contents

  1. 实现区间树的起因
  2. 区间树实现简介
    1. 插入/删除
    2. 查询重叠操作
  3. 使用Safe Rust实现区间树
    1. 问题
    2. Rc<RefCell<T>>
      i. 线程安全问题
    3. 其他智能指针
      i. Arc<Mutex<T>>?
      ii. QCell
    4. 数组模拟指针
  4. 总结

01、实现区间树的起因

在Xline最近的一次重构中, 我们发现有两个在关键路径上的数据结构Speculative Pool和Uncommitted Pool导致了性能瓶颈。这两个数据结构用于在CURP中进行冲突检测。具体来说, 由于CURP协议的要求, 对于每个处理的command, 需要在已经接收的commands中找到所有与当前command相冲突的commands。

例如对于KV操作 put/get_range/delete_range, 我们需要考虑这些操作之间可能的冲突情况。由于每个KV操作都会有一个key的范围, 所以问题就转化为要查询某一个key范围和某个Pool中所有key范围的集合是否有相交。采用朴素遍历整个集合的方法会导致每次查询的时间复杂度为 O(n),从而降低效率并导致性能瓶颈。

为了解决这一问题, 我们需要引入区间树这一数据结构。区间树能够高效支持重叠区间的插入,删除和查询操作, 这三种操作都可以在 O(log(n)) 的时间内完成。因此, 我们可以利用区间树维护key范围的集合, 从而解决性能瓶颈的问题。

02、区间树实现简介

Xline中的区间树是基于 Introduction to Algorithms (3rd ed.) 实现的, 它是由二叉平衡树扩展而来。

区间树以一颗二叉平衡树为基础(例如使用红黑树实现), 将区间本身作为平衡树的key。对于区间 [low, high] , 我们首先按照 low 值进行排序, 如果 low 值相同, 再按照 high 值进行排序, 这样对区间集合能够定义一个全序的关系(如果不处理重复区间则不需要对 high 排序)。同时, 对于平衡树的每一个节点, 我们在这个节点上记录以这个节点为根的子树中 high 的最大值, 记为 max 。

插入/删除

与红黑树的插入/删除相同, 最坏时间复杂度为 O(log(n))

查询重叠操作

给出一个区间 i , 我们需要查询当前树中是否有区间和 i 重合。在Introduction to Algorithms中给出的伪代码如下

有了 max 的定义, 解决这个问题的思路就非常简单了: 对于以 x 为根的子树 T_x , 如果 i 不和 x_i 相交, 那么 i 一定是在 x_i 的左侧或者右侧。

1. 如果 i 在 x_i 的左侧这时可以直接排除右子树, 因为这时 i.high 比 x_i.low 还要小

2. 如果 i 在 x_i 的右侧在这种情况下, 我们无法直接排除左子树, 因为左子树中的节点区间仍然可能和 i 相交。这时候 max 值就派上用场了:

  • 如果 x 的左子树中 high 的最大值仍然小于 i.low 的话, 那么可以直接排除 x 的左子树。
  • 如果 x 的左子树中 high 的最大值大于或等于 i.low 的话, 那么左子树中一定存在和 i 相交的区间, 因为 x 左子树中所有的 low 都小于 x_i.low , 而 i 在 x_i 的右侧, 所以 x 左子树中所有的 low 也小于 i.low , 因此一定有相交。

通过以上两点可以验证上述伪代码的正确性, 并且从代码可以看出查询的最坏时间复杂度为 O(log(n)) 。

03、使用Safe Rust实现区间树

困难点

为了构建区间树, 我们首先需要实现一个红黑树。在红黑树中, 每个树节点需要指向父节点, 这就要求一个节点实例存在多个所有权。

Rc<RefCell<T>>

最初我尝试使用了Rust最常见的多所有权的实现 Rc<RefCell<T>> , 树节点结构类似于以下的代码:

struct Node<T, V> {left: Option<NodeRef<T, V>>,right: Option<NodeRef<T, V>>,parent: Option<NodeRef<T, V>>,...
}struct NodeRef<T, V>(Rc<RefCell<Node<T, V>>>);

从数据结构定义上看起来还算清晰, 但是实际使用起来相当繁琐, 因为 RefCell 要求用户明确地调用 borrow , 或者 borrow_mut , 我不得不构建很多helper functions来简化实现, 下面是一些例子:

impl<T, V> NodeRef<T, V> {fn left<F, R>(&self, op: F) -> RwhereF: FnOnce(&NodeRef<T, V>) -> R,{op(self.borrow().left())}fn parent<F, R>(&self, op: F) -> RwhereF: FnOnce(&NodeRef<T, V>) -> R,{op(self.borrow().parent())}fn set_right(&self, node: NodeRef<T, V>) {let _ignore = self.borrow_mut().right.replace(node);}fn set_max(&self, max: T) {let _ignore = self.borrow_mut().max.replace(max);}...
}

RefCell使用上不符合人体工程学是一点, 更糟糕的是我们在代码中需要使用大量的 Rc::clone , 因为在自上而下遍历树节点时, 我们需要持有一个节点的owned type, 而不是一个引用。例如在之前提到的 INTERVAL-SEARCH 操作中, 每次 x = x.left 或者 x = x.right , 首先需要borrow x本身, 再赋值给x。因此需要先取得左(或右)节点的owned type, 再更新 x 到新值。这样导致大量的节点计数开销。

具体开销到底有多大?我尝试对于我们上面的实现进行benchmark, 使用随机数据插入和删除。我本机环境为Intel 13600KF和DDR4内存。

test bench_interval_tree_insert_100           ... bench:       9,821 ns/iter (+/- 263)
test bench_interval_tree_insert_1000          ... bench:     215,362 ns/iter (+/- 6,536)
test bench_interval_tree_insert_10000         ... bench:   2,999,694 ns/iter (+/- 134,979)
test bench_interval_tree_insert_remove_100    ... bench:      18,395 ns/iter (+/- 750)
test bench_interval_tree_insert_remove_1000   ... bench:     385,858 ns/iter (+/- 7,659)
test bench_interval_tree_insert_remove_10000  ... bench:   5,465,355 ns/iter (+/- 114,735)

使用相同数据和环境, 和etcd的golang区间树实现进行对比:

BenchmarkIntervalTreeInsert100-20                 123747             12250 ns/op
BenchmarkIntervalTreeInsert1000-20                  7119            189613 ns/op
BenchmarkIntervalTreeInsert10_000-20                 340           3237907 ns/op
BenchmarkIntervalTreeInsertRemove100-20            24584             45579 ns/op
BenchmarkIntervalTreeInsertRemove1000-20             344           3462977 ns/op
BenchmarkIntervalTreeInsertRemove10_000-20             3         358284695 ns/op

可以看到我们的Rust实现并无优势, 甚至有时插入操作还会更慢。(注: 这里的etcd的节点删除实现似乎有问题, 观察节点数量从 1000->10000 时耗时的增长, 复杂度可能不是 O(log(n)))

线程安全问题

即使我们勉强接受以上的性能, 一个更严重的问题浮出水面: Rc<RefCell<T>> 无法在多线程环境下使用! 由于Xline是在Rust的Tokio runtime之上构建, 需要在多个线程间共享一个区间树实例。可惜的是, Rc 本身是 !Send , 因为 Rc 内部的引用计数是以非原子的方式递增/减的。那么这就导致整个区间树的数据结构无法发送到其他线程。除非我们采用一个专用线程, 并且通过channel与这个线程进行通信, 我们无法在多线程环境下使用。

其他智能指针

于是我们需要考虑其他智能指针来解决这个问题。一个自然的想法是使用 Arc<RefCell<T>> 。然而, RefCell本身是 !Sync , 因为 RefCell 的borrow checking只能在单线程下使用, 无法同时由多个线程共享, 并且 Arc<T> 是 Send 当且仅当 T 是 Sync , 因为 Arc 本身允许克隆。

Arc<Mutex<T>>?

那么在多线程环境多所有权似乎只能够使用 Arc<mutex<T>> 了。但是显然这对于我们的用例来说是一个anti-pattern, 因为这样我们就需要对每一个节点都加上一把锁, 而树中可能有数十万乃至几百万的节点, 这是不可接受的。

QCell

在使用常规方法无果后, 我们尝试使用了qcell这个crate, 其中 QCell 作为 RefCell 的多线程替代品。作者非常巧妙地解决了多所有权下借用检查的问题。

QCell设计

由于qcell的设计在 GhostCell 的论文中有正式的证明, 这里我就介绍介绍一下 GhostCell 论文中的设计:

在Rust中, 对于数据操作的权限和数据本身是绑定在一起的, 也就是说, 你首先要拥有一个数据, 才能修改它的状态。具体一点, 想要修改数据 T , 你要么有一个 T 本身, 要么有一个 &mut T 。

GhostCell 的设计概念是将对数据操作的权限和数据本身分开, 那么对于一种数据, 数据 T 本身是一个类型, 而它的权限同样也是是一个具体的类型, 记为 P_t 。这种设计相比与Rust现有设计就更加灵活, 因为可以让一个权限类型的实例拥有对一个数据集合的权限, 即一个 P_t 拥有多个 T 。在这种设计下, 只要权限类型实例本身是线程安全的, 它所管理的这一个数据集合也是线程安全的。

在qcell中使用方法如下, 首先需要创建一个 QCellOwner 代表前述的权限, QCell<T> 则表示储存的数据。

let mut owner = QCellOwner::new();
let item = Arc::new(QCell::new(&owner, Vec::<u8>::new()));
owner.rw(&item).push(0);

QCellOwner 拥有注册到它这里的 QCell 的读写权限(通过 QCellOwner::rw 或者 QCellOwner::ro ), 所以只要 QCellOwner 是线程安全, QCell 中的数据也是线程安全的。在这里 QCellOwner 本身是 Send + Sync , QCell 也可以是 Send + Sync 只要 T 满足:

impl<T: ?Sized + Send> Send for QCell<T>
impl<T: ?Sized + Send + Sync> Sync for QCell<T>

使用QCell

得益于它的设计, QCell 本身开销非常小(这里的具体的开销不展开讲了), 因为它借助于Rust类型系统使得borrow checking是在编译期检查的, 而 RefCell 相比之下则是在运行时检查, 因此使用 QCell 不仅能在多线程环境下使用, 还能够提升一部分性能。

接下来就是应用 QCell 到我们的树实现上了。由于 QCell 只提供内部可变性, 要能够使用多重所有权, 我们还需要有 Arc , 结构大致看起来如下:

pub struct IntervalTree {node_owner: QCellOwner,...
}struct NodeRef<T, V>(Arc<QCell<Node<T, V>>>);

看起来不错, 那么性能如何呢?

test bench_interval_tree_insert_100           ... bench:      41,486 ns/iter (+/- 71)
test bench_interval_tree_insert_1000          ... bench:     586,854 ns/iter (+/- 13,947)
test bench_interval_tree_insert_10000         ... bench:   7,726,849 ns/iter (+/- 102,820)
test bench_interval_tree_insert_remove_100    ... bench:      75,569 ns/iter (+/- 325)
test bench_interval_tree_insert_remove_1000   ... bench:   1,135,232 ns/iter (+/- 7,539)
test bench_interval_tree_insert_remove_10000  ... bench:  15,686,474 ns/iter (+/- 194,385)

比较之前的测试结果, 性能竟然下降了1-3倍。这说明最大的开销不是Cell, 而是引用计数, 在我们的区间树用例中, 使用 Arc 比 Rc 慢了非常多。

一个不使用 Arc 的方法是使用arena分配, 即一次性对所有对象分配内存, 并且销毁也是一次性的, 但是这在树的数据结构中并不适用, 因为我们需要动态地分配和销毁节点的内存。

数组模拟指针

性能测试反映出我们的智能指针尝试是失败的。在Rust所有权模型下, 使用智能指针来实现树结构是非常糟糕的。

那么我们可不可以不使用指针来实现呢? 一个自然的想法是使用数组来模拟指针。

于是我们的树结构重新设计如下:

pub struct IntervalTree {nodes: Vec<Node>,...
}pub struct Node {left: Option<u32>,right: Option<u32>,parent: Option<u32>,...
}

可以看出在Rust中数组模拟指针的优势是不需要某个节点的所有权, 只需要记录下某个节点在 Vec 中的位置即可。每次插入新节点即向 nodes 后面push一个节点, 它的模拟指针就是 nodes.len() - 1 。

对于插入操作非常简单, 但是如果我们需要删除节点呢? 如果使用朴素的删除方法: 更新树节点的指针后直接将 Vec 中的对应的节点置为空, 那么这样就会在我们的 Vec 中留下一个“空洞”。这样的话我们需要再额外维护一个链表结构来记录这个“空洞”的位置, 以便在下一次插入的时候能重新使用。而且这种方法会导致 nodes 这个 Vec 的空间难以回收, 即使大部分节点已经被删除。

那么如何解决这个问题呢? 接下来我参照了petgraph中的方法, 在删除一个节点时, 将这个节点与 Vec 中最后一个节点交换再移除, 这样就解决了之前的内存回收的问题。需要注意的是, 我们需要同时更新与最后一个节点有关节点的指针, 因为它的位置发生了变化。在petgraph的图实现中, 这个操作可能是很耗时的, 因为一个节点可能会连接多条边, 但是在我们的树用例中, 我们只需要更新这个节点的父亲/左孩子/右孩子总共3个节点, 因此这个操作是 O(1) 的, 这样就非常高效的解决了节点删除的问题。

我们再来对我们的新实现进行benchmark:

test bench_interval_tree_insert_100           ... bench:       3,333 ns/iter (+/- 87)
test bench_interval_tree_insert_1000          ... bench:      85,477 ns/iter (+/- 3,552)
test bench_interval_tree_insert_10000         ... bench:   1,406,707 ns/iter (+/- 20,796)
test bench_interval_tree_insert_remove_100    ... bench:       7,157 ns/iter (+/- 69)
test bench_interval_tree_insert_remove_1000   ... bench:     189,277 ns/iter (+/- 3,014)
test bench_interval_tree_insert_remove_10000  ... bench:   3,060,029 ns/iter (+/- 50,829)

从结构来看这次的性能提升非常之大, 对比之前的 Rc<RefCell<Node>> 或者是etcd的golang的实现大约快了1-2倍。

使用数组模拟指针不仅轻松解决了所有权的问题, 并且由于数组内存的连续性使其对于缓存更加友好, 比纯指针性能甚至会更高。

04、总结

至此, 我们成功完美解决了使用safe Rust实现区间树的问题。从之前所述的多种尝试来看, 在Rust中使用引用计数智能指针来实现树或者图的数据结构是失败的, 因为这些智能指针并不适用于大量的内存操作。将来如果需要使用safe Rust实现指针类数据结构, 我会优先考虑使用数组而不是智能指针。

往期推荐

1.Xline 源码解读(一) —— 初识 CURP 协议

2.Xline 源码解读(三) —— CURP Server 的实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/314793.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

苍穹外卖学习笔记(8.用户端历史订单模块,商家端订单管理模块)

目录 一、商家端订单管理模块1、查看历史订单2、查询订单详情3、取消订单4、再来一单5、代码开发6、测试 二、用户端历史订单模块1、订单搜索2、各个状态的订单数量统计3、查询订单详情4、接单5、拒单6、取消订单7、派送订单8、完成订单9、代码开发10、测试 三、校验收货地址是…

逆向案例二十九——复杂扣代码,七某数据(一)

网址&#xff1a;aHR0cHM6Ly93d3cucWltYWkuY24vcmFuaw 抓包分析载荷中有加密参数analysis&#xff1a; 获取数据代码&#xff0c;经过分析&#xff0c;发现analysis确实是校验参数cai&#xff1a; import requestscookies {qm_check: A1sdRUIQChtxen8pI0dAMRcOUFseEHBeQF0JT…

31.Gateway网关-跨域问题

跨域 1.域名不同&#xff1a;www.baidu.com和www.taobao.com,www.taobao.org 2.域名相同&#xff0c;端口不同。localhost:8080和localhost:8081 跨域问题 浏览器禁止请求的发起者与服务端发生跨域ajax请求&#xff0c;请求被浏览器拦截的问题。 解决方案 CORS 浏览器询…

安全开发实战(2)---域名反查IP

目录 安全开发专栏 前言 域名与ip的关系 域名反查ip的作用 1.2.1 One 1.2.2 Two 1.2.3 批量监测 ​总结 安全开发专栏 安全开发实战http://t.csdnimg.cn/25N7H 这步是比较关键的一步,一般进行cdn监测后,获取到真实ip地址后,或是域名时,然后进行域名反查IP地址,进行进…

PySide6 GUI 学习笔记——Python文件编译打包

前面编写的软件工具都必须运行在Python环境中&#xff0c;且通过命令行的方式运行&#xff0c;通过Python打包工具&#xff0c;我们可以把.py文件封装成对应平台的运行文件&#xff0c;供用户执行。 常见Python打包工具 工具简介官网/文档地址py2exe将Python脚本转换为Window…

速卖通自养号测评:如何规避安全风险?

对于初涉电商领域的新卖家而言&#xff0c;进行销量测评显得尤为关键。由于速卖通新店铺往往难以获得平台活动的支持&#xff0c;流量也相对匮乏&#xff0c;因此&#xff0c;开店的首要任务便是进行测评&#xff0c;通过积累一定的评论和销售数据。 测评的益处颇多&#xff0…

【大语言模型LLM】- Meta开源推出的新一代大语言模型 Llama 3

&#x1f525;博客主页&#xff1a;西瓜WiFi &#x1f3a5;系列专栏&#xff1a;《大语言模型》 很多非常有趣的模型&#xff0c;值得收藏&#xff0c;满足大家的收集癖&#xff01; 如果觉得有用&#xff0c;请三连&#x1f44d;⭐❤️&#xff0c;谢谢&#xff01; 长期不…

Unity对应的c#版本

本文主要是记录一下unity已经开始兼容c#的版本和.net版本&#xff0c;以便更好的利用c#的特性。 c#和.net对应情况 微软已经将.net开发到.net 9了&#xff0c;但是unity的迭代速度远没有c#迭代速度快&#xff0c;已知unity最新的LTS版本unity2023已经兼容了c#9 可以在unity手册…

【深度学习】yolo-World,数据标注,zeroshot,目标检测

仓库&#xff1a;https://github.com/AILab-CVC/YOLO-World 下载权重&#xff1a; 仓库下载和环境设置 下载仓库&#xff1a;使用以下命令从 GitHub 上克隆仓库&#xff1a; git clone --recursive https://github.com/AILab-CVC/YOLO-World.git创建并激活环境&#xff1a…

网络安全新挑战:通用人工智能(AGI)等级保护指南

通用人工智能&#xff08;AGI&#xff09;的发展现状及趋势 随着2023年大语言模型应用的划时代突破&#xff0c;以ChatGPT为杰出代表的此类技术犹如一股洪流&#xff0c;彻底颠覆了人类与机器智能交互的疆界&#xff0c;引领通用人工智能&#xff08;AGI&#xff09;步入一个崭…

【继承和多态】

闭上眼睛&#xff0c;什么都不听.............................................................................................................. 文章目录 前言 一、【继承】 1.1【继承的概念】 1.2【 继承的定义】 1.2.1【定义格式】 1.2.2【继承关系和访问限定符】 1.2…

回归预测 | Matlab实现SA-BP模拟退火算法优化BP神经网络多变量回归预测

回归预测 | Matlab实现SA-BP模拟退火算法优化BP神经网络多变量回归预测 目录 回归预测 | Matlab实现SA-BP模拟退火算法优化BP神经网络多变量回归预测预测效果基本描述程序设计参考资料 预测效果 基本描述 1.Matlab实现SA-BP模拟退火算法优化BP神经网络多变量回归预测&#xff0…

OGG extract进程占据大量虚拟内存导致服务器内存异常增长分析

现象 oracle服务器一节点内存&#xff0c;一个月来持续升高&#xff0c;近一月上涨10%左右。 问题分析 OS内存使用情况 使用内存最大的10个进程如下&#xff0c;PID为279417占用最大的内存。 查询279417&#xff0c;发现是ogg相关进程。 发现ogg的extract进程占用了大量的虚拟内…

27 - 数据传送指令

---- 整理自B站UP主 踌躇月光 的视频 文章目录 1. CPU 电路2. 数据传送指令的几种情况3. 实验工程4. 实验结果 1. CPU 电路 2. 数据传送指令的几种情况 # program.asm; 1. ; MOV A, 5;; 2. ; MOV A, B;; 3. ; MOV A, [5];; 4. ; MOV B, 6 ; MOV A, [B]; 5. ; MOV [0x2f], 5;; …

Apache RocketMQ ACL 2.0 全新升级

作者&#xff1a;徒钟 引言 RocketMQ 作为一款流行的分布式消息中间件&#xff0c;被广泛应用于各种大型分布式系统和微服务中&#xff0c;承担着异步通信、系统解耦、削峰填谷和消息通知等重要的角色。随着技术的演进和业务规模的扩大&#xff0c;安全相关的挑战日益突出&am…

为AI电脑生态注入强悍动力,安耐美PlatiGemini 1200W高性能电源

在DIY攒机的过程中&#xff0c;电源是非常重要的一环&#xff0c;现在高性能的硬件功耗往往很高&#xff0c;因此一款优秀的电源整个系统稳定运行的基石。最近&#xff0c;我发现一款由安耐美&#xff08;Enermax&#xff09;推出的PlatiGemini 1200W电源&#xff0c;它不仅满足…

云原生Kubernetes: K8S 1.29版本 部署ingress-nginx

目录 一、实验 1.环境 2. K8S 1.29版本 部署ingress-nginx 二、问题 1.kubectl 如何强制删除 Pod、Namespace 资源 2.创建pod失败 3.pod报错ImagePullBackOff 4.docker如何将镜像上传到官方仓库 5.创建ingress报错 一、实验 1.环境 &#xff08;1&#xff09;主机 表…

springboot如何使用RedisTemplate

第一步&#xff1a;创建一个spring boot项目 第二步&#xff1a;pom导入redis相关依赖 <!--reids依赖--> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId> </depen…

微信小程序:12.页面导航

什么是页面导航 页面导航指的是页面之间的相互跳转。例如&#xff0c;浏览器中实现的页面导航的方式有两种&#xff1a; 连接location.href 小程序中实现页面导航的两种方式 声明式导航 在页面上声明一个导航组件 通过点击组件实现页面跳转 导航TabBar页面 是指配置TabB…

LM2576D2TR4-5G 3.0安15伏降压开关稳压器 PDF中文资料_参数_引脚图

LM2576D2TR4-5G 规格信息&#xff1a; 制造商:ON Semiconductor 产品种类:开关稳压器 RoHS:是 装置风格:SMD/SMT 封装 / 箱体:TO-263-5 输出电压:5 V 输出电流:3 A 输出端数量:1 Output 最大输入电压:45 V 拓扑结构:Buck 最小输入电压:7 V 开关频率:52 kHz 最小工作…