使用 Python 代码实现 ICMP Timestamp 请求和回应

前言

ICMP(Internet Control Message Protocol)是在IP网络上传输控制消息的协议。其中,ICMP Timestamp请求和回应是ICMP协议中的一种消息类型,用于获取和同步网络设备的时间戳信息。

ICMP Timestamp请求和回应的工作原理如下:

1. 发送方(通常是客户端)发送ICMP Timestamp请求消息到目标设备(通常是服务器)。

2. 目标设备接收到请求消息后,会根据自己的时间戳信息生成一个ICMP Timestamp回应消息,并将其发送回发送方。

3. 发送方收到回应消息后,可以通过比较发送和接收的时间戳信息来计算网络延迟和时钟差等相关信息。

ICMP Timestamp请求和回应主要用于网络诊断和性能测量。通过比较发送和接收的时间戳信息,可以计算出网络延迟,即消息从发送方到目标设备的往返时间。这对于评估网络的响应速度和性能非常有用。

此外,ICMP Timestamp请求和回应还可以用于检测网络中的时钟偏差。通过比较发送方和目标设备的时间戳信息,可以计算出两者之间的时钟差,从而进行时钟同步。

需要注意的是,由于ICMP协议是基于IP协议的,因此ICMP消息可能会受到网络中的防火墙或其他安全设备的过滤或限制。在实际应用中,使用ICMP Timestamp请求和回应需要注意相关安全性和隐私问题,并遵循网络管理和安全最佳实践。

具体代码如下: 

import socket
import struct
import time# 构建ICMP Timestamp请求数据包
def build_icmp_request():# IP头部header = b'\x08\x00\x00\x00\x00\x00\x00\x00'# ICMP头部icmp_type = 13  # ICMP Timestamp请求类型icmp_code = 0icmp_checksum = 0icmp_id = 12345icmp_seq = 1# 时间戳数据timestamp = int(time.time())# 使用struct.pack()函数将icmp_id、icmp_seq和timestamp打包成二进制数据# !HHd表示使用网络字节序进行打包,H表示一个无符号短整数(2字节),d表示一个双精度浮点数(8字节)icmp_data = struct.pack('!HHd', icmp_id, icmp_seq, timestamp)# 计算ICMP校验和# 使用struct.pack()函数将icmp_type、icmp_code、icmp_checksum、icmp_id、icmp_seq和timestamp + 1打包成二进制数据# !BBHHHd表示使用网络字节序进行打包,B表示一个无符号字节(1字节),H表示一个无符号短整数(2字节),d表示一个双精度浮点数(8字节)icmp_checksum = calculate_checksum(struct.pack('!BBHHHd', icmp_type, icmp_code, icmp_checksum, icmp_id, icmp_seq, timestamp + 1))# 构建ICMP Timestamp请求数据包icmp_request = struct.pack('!BBHHHd', icmp_type, icmp_code, icmp_checksum, icmp_id, icmp_seq, timestamp) + icmp_datareturn header + icmp_request# 计算校验和# 1. `checksum = 0`:初始化变量`checksum`为0,用于计算校验和。
# 
# 2. `countTo = (len(data) // 2) * 2`:计算需要进行校验和计算的数据的长度,将其除以2取整并乘以2,以确保数据长度为偶数。
# 
# 3. `for count in range(0, countTo, 2):`:使用循环遍历数据,每次迭代处理两个字节的数据。
# 
# 4. `thisVal = data[count + 1] * 256 + data[count]`:将两个字节的数据合并为一个16位的整数,其中高位字节乘以256后与低位字节相加。
# 
# 5. `checksum = checksum + thisVal`:将计算得到的整数与之前的校验和相加。
# 
# 6. `checksum = checksum & 0xffffffff`:将校验和限制在32位范围内。
# 
# 7. `if countTo < len(data):`:检查数据长度是否为奇数。
# 
# 8. `checksum = checksum + data[len(data) - 1]`:如果数据长度为奇数,将最后一个字节与校验和相加。
# 
# 9. `checksum = checksum & 0xffffffff`:将校验和限制在32位范围内。
# 
# 10. `checksum = (checksum >> 16) + (checksum & 0xffff)`:将校验和的高16位和低16位相加。
# 
# 11. `checksum = checksum + (checksum >> 16)`:将结果的高16位与低16位再相加。
# 
# 12. `answer = ~checksum`:将校验和取反。
# 
# 13. `answer = answer & 0xffff`:将校验和限制在16位范围内。
# 
# 14. `answer = answer >> 8 | (answer << 8 & 0xff00)`:将校验和的字节顺序进行反转。
# 
# 15. `return answer`:返回计算得到的校验和。def calculate_checksum(data):checksum = 0countTo = (len(data) // 2) * 2for count in range(0, countTo, 2):thisVal = data[count + 1] * 256 + data[count]checksum = checksum + thisValchecksum = checksum & 0xffffffffif countTo < len(data):checksum = checksum + data[len(data) - 1]checksum = checksum & 0xffffffffchecksum = (checksum >> 16) + (checksum & 0xffff)checksum = checksum + (checksum >> 16)answer = ~checksumanswer = answer & 0xffffanswer = answer >> 8 | (answer << 8 & 0xff00)return answer# 发送ICMP Timestamp请求并接收回应
def send_icmp_request(destination):# 构建ICMP Timestamp请求数据包icmp_request = build_icmp_request()# 创建原始套接字# socket.socket()函数用于创建一个新的套接字对象。此处使用AF_INET参数指定使用IPv4协议族,SOCK_RAW参数指定使用原始套接字类型,IPPROTO_ICMP参数指定使用ICMP协议sock = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_ICMP)# 设置套接字的选项# setsockopt()函数用于设置套接字选项的值。IPPROTO_IP参数表示要设置的选项属于IP协议,IP_HDRINCL参数表示要设置的选项是IP头部的包含选项,1表示要启用该选项sock.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)# 发送ICMP Timestamp请求数据包# sendto()方法用于发送数据到指定的目标地址。icmp_request参数是要发送的数据包,(destination, 0)参数表示目标地址和端口,其中destination是目标主机的IP地址,0表示端口号sock.sendto(icmp_request, (destination, 0))# 接收ICMP回应数据包# recvfrom()方法用于从套接字接收数据。1024参数表示一次最多接收的数据大小data, address = sock.recvfrom(1024)# 解析ICMP回应数据包icmp_reply = struct.unpack('!BBHHHd', data[20:36])# 提取时间戳信息timestamp = icmp_reply[5]return timestampdef main():# 示例用法destination = '192.168.134.128'  # 目标主机IP地址timestamp = send_icmp_request(destination)print(f'Timestamp from {destination}: {timestamp}')if __name__ == '__main__':main()

运行结果: 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/316731.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32与Proteus的串口仿真详细教程与源程序

资料下载地址&#xff1a;STM32与Proteus的串口仿真详细教程与源程序 资料内容 包含LCD1602显示&#xff0c;串口发送接收&#xff0c;完美实现。 文档内容齐全&#xff0c;包含使用说明&#xff0c;相关驱动等。 解决了STM32的Proteus串口收发问题。 注意&#xff1a;每输…

【酱浦菌-爬虫项目】爬取百度文库文档

1. 首先&#xff0c;定义了一个变量url&#xff0c;指向百度文库的搜索接口 ‘https://wenku.baidu.com/gsearch/rec/pcviewdocrec’。 2. 然后&#xff0c;设置了请求参数data&#xff0c;包括文档ID&#xff08;docId&#xff09;和查询关键词&#xff08;query&#xff09;。…

debian gnome-desktop GUI(图形用户界面)系统

目录 &#x1f31e;更新 &#x1f3a8;安装 &#x1f34e;分配 &#x1f6cb;️重启 &#x1f511;通过VNC连接 debian gnome-desktop &#x1f31e;更新 sudo apt update sudo apt -y upgrade &#x1f3a8;安装 sudo apt -y install task-gnome-desktop 这个过程比…

【HTTP协议】了解http需要学习哪些内容

HTTP&#xff08;Hypertext Transfer Protocol&#xff09;是超文本传输协议&#xff0c;互联网上应用最广泛的一种协议&#xff0c;它负责在客户端和服务器之间传输数据。本文将从HTTP协议的基本原理、请求-响应模型、常见特性以及应用场景等方面进行总结。 1. HTTP基本原理 …

WordPress缓存插件有哪些?好用的缓存插件分享

目前WordPress缓存插件有&#xff1a;WP Rocket、WP Super Cache、W3 Total Cache、Sucuri、NitroPack、SiteGround Optimizer、LiteSpeed Cache、WP-Optimize、Hummingbird、Cache Enabler、Comet Cache。 在当今的数字世界中&#xff0c;拥有一个高效的网站对于吸引和留住用…

智慧农场系统 搭建重点,会用到哪些三方服务?

智慧农场小游戏的搭建重点主要集中在游戏设计、用户体验、数据安全和稳定性等方面。为了实现这些目标&#xff0c;可能会用到以下第三方服务&#xff1a; 游戏引擎和开发工具&#xff1a;使用成熟的游戏引擎和开发工具可以极大地简化开发流程&#xff0c;提高开发效率。例如&a…

Node+Express连接mysql实现增删改查

还是大剑师兰特&#xff1a;曾是美国某知名大学计算机专业研究生&#xff0c;现为航空航海领域高级前端工程师&#xff1b;CSDN知名博主&#xff0c;GIS领域优质创作者&#xff0c;深耕openlayers、leaflet、mapbox、cesium&#xff0c;canvas&#xff0c;webgl&#xff0c;ech…

GhostNetV3 论文学习

论文地址&#xff1a;https://arxiv.org/abs/2404.11202 代码地址&#xff1a;https://github.com/huawei-noah/Efficient-AI-Backbones 解决了什么问题&#xff1f; 对于边端设备&#xff0c;人们特别设计了一些精简的神经网络&#xff0c;这些网络推理速度更快、表现适中。…

C++并发编程

基本介绍 线程 C98标准没有直接提供原生的多线程支持 在C98中&#xff0c;并没有像后来的C11标准中那样的<thread>库或其他直接的多线程工具 然而&#xff0c;这并不意味着在C98中无法实现多线程。开发者通常会使用平台特定的API&#xff08;如Windows的线程API或POSI…

【C/C++】动态内存管理(C:malloc,realloc,calloc,free || C++:new,delete)

&#x1f525;个人主页&#xff1a; Forcible Bug Maker &#x1f525;专栏&#xff1a; C | | C语言 目录 前言C/C内存分布C语言中的动态内存管理&#xff1a;malloc/realloc/realloc/freemallocrealloccallocfree C中的动态内存管理&#xff1a;new/deletenew和delete操作内…

微信小程序:9.小程序配置

全局配置文件 小程序根目录下的app.json文件是小程序的全局配置文件。 常用的配置文件如下: pages 记录当前小程序所有的页面存放路径信息 window 全局设置小程序窗口外观 tabBar 设置小程序底部的tabBar效果 style 是否启用新版style 小程序窗口的组成部分 了解windo节点常…

HTTP:强缓存优化实践

强缓存&#xff1a;浏览器不会向服务器发送任何请求&#xff0c;直接从本地缓存中读取文件 强缓存是指浏览器在向服务器请求资源时&#xff0c;判断本地是否存在该资源的缓存&#xff0c;并判断是否过期。 如果本地缓存未过期&#xff0c;浏览器就直接使用本地缓存&#xff0c…

element 分页切换时:current-page无效 页数不会跟着一起切换

问题回溯&#xff1a;使用el-pagination组件 选择切换当前分页 页数为2 问题结果&#xff1a;el-pagination组件 当前页切换失败 一直都是 1&#xff0c;接口传参分页数据是2&#xff0c;打印当前分页也是2 解决方案1&#xff1a;使用 current-page参数 .sync 修饰符 解决方案2…

微信小程序简单实现购物车功能

微信小程序简单实现购物车结算和购物车列表展示功能 实现在微信小程序中对每一个购物车界面的商品订单&#xff0c;进行勾选结算和取消结算的功能&#xff0c;相关界面截图如下&#xff1a; 具体实现示例代码为&#xff1a; 1、js代码&#xff1a; Page({/*** 页面的初始数…

清理电脑垃圾软件

清理电脑垃圾软件 1.geek.exe 强力卸载 2. 磁盘分析 直接删除 log 磁盘文件大小分析工具WizTree_v4.01

TCP相关问题总结

文章目录 TCP连接建立过程1. TCP三次握手2. TCP四次挥手3. TCP为什么是三次握手4. TCP为什么是四次挥手 TCP流量控制TCP拥塞控制1. 为什么需要拥塞控制2. 控制手段 TCP连接建立过程中出现丢包 TCP连接建立过程 1. TCP三次握手 首先client端发出连接请求&#xff0c;并且请求同…

paddle ocr模型量化实践

参考&#xff1a;https://github.com/PaddlePaddle/PaddleOCR/blob/main/deploy/slim/quantization/README.md https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.7.1/doc/doc_ch/FAQ.md 蒸馏 剪枝 量化 参考&#xff1a;https://blog.csdn.net/mddCSDN/article/de…

高扬程水泵,提升水源新选择!— 恒峰智慧科技

在炎炎夏日&#xff0c;阳光炙烤着大地&#xff0c;森林火灾的发生频率也随之上升。火势猛烈&#xff0c;烟雾弥漫&#xff0c;给森林带来了极大的破坏。为了保护森林资源&#xff0c;我们必须采取有效的措施来扑灭火灾。而在这其中&#xff0c;高扬程水泵成为了提升水源新选择…

一种基于YOLOv8改进的高精度红外小目标检测算法 (原创自研)

&#x1f4a1;&#x1f4a1;&#x1f4a1;本文摘要&#xff1a;一种基于YOLOv8改进的高精度小目标检测算法&#xff0c; 在红外小目标检测任务中实现暴力涨点&#xff1b; &#x1f4a1;&#x1f4a1;&#x1f4a1;创新点&#xff1a; 1&#xff09;SPD-Conv特别是在处理低分…

手持LED弹幕,超炫特效,让你的每一次出场都耀眼夺目!

在这个快节奏的数字时代&#xff0c;沟通不再局限于言语和文字&#xff0c;就连表白、追星、晚会互动&#xff0c;甚至日常的提词都需要一点科技的火花来点燃气氛。于是&#xff0c;手持LED弹幕滚动屏&#xff0c;这个集实用与趣味于一身的神器&#xff0c;悄然成为了社交场上的…