深度学习:基于Keras,使用长短期记忆人工神经网络模型(LSTM)对股票市场进行预测分析

stock

前言

系列专栏:机器学习:高级应用与实践【项目实战100+】【2024】✨︎
在本专栏中不仅包含一些适合初学者的最新机器学习项目,每个项目都处理一组不同的问题,包括监督和无监督学习、分类、回归和聚类,而且涉及创建深度学习模型、处理非结构化数据以及指导复杂的模型,如卷积神经网络、门控循环单元、大型语言模型和强化学习模型

在文本中,我们将探索股市数据,特别是一些科技股(苹果、亚马逊、谷歌和微软)。我们将探讨如何使用yfinance来获取股票信息,并使用SeabornMatplotlib可视化其中的不同特征。我们将根据股票之前的表现历史,研究几种分析股票风险的方法。我们还将通过长短期记忆(LSTM)方法预测未来股价!

在此过程中,我们将回答以下问题:

  1. 随着时间的推移,股票价格的变化是什么?
  2. 股票的平均日收益是多少?
  3. 各种股票的移动平均数是多少?
  4. 不同股票之间的相关性是什么?
  5. 我们投资一只特定的股票会有多大的风险?
  6. 我们如何尝试预测未来的股票行为?(使用LSTM预测APPLE公司的收盘价股票价格)

目录

  • 1. 相关库和数据集
    • 1.1 相关库介绍
    • 1.2 数据集介绍
    • 1.3 描述性统计
    • 1.4数据的信息
  • 2. 探索性数据分析
    • 2.1 股票的收盘价
    • 2.2 股票的交易量
    • 2.3 股票的移动平均值
    • 2.4 股票的平均日收益
    • 2.5 股票的平均回报率
    • 2.6 不同股票收盘价格之间的相关性
    • 2.7 我们投资于某只股票的风险价值
  • 3. 预测 APPLE 公司股票的收盘价
  • 4. 数据建模()
    • 4.1 数据准备(拆分为训练集和测试集)

1. 相关库和数据集

1.1 相关库介绍

Python 库使我们能够非常轻松地处理数据并使用一行代码执行典型和复杂的任务。

  • Pandas – 该库有助于以 2D 数组格式加载数据框,并具有多种功能,可一次性执行分析任务。
  • Numpy – Numpy 数组速度非常快,可以在很短的时间内执行大型计算。
  • Matplotlib/Seaborn – 此库用于绘制可视化效果,用于展现数据之间的相互关系。
  • Keras – 这是一个用于机器学习和人工智能的开源库,并提供一系列功能,只需一行代码即可实现复杂的功能
import pandas as pd
import numpy as npimport matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline# For reading stock data from yahoo
from pandas_datareader.data import DataReader
import yfinance as yf
from pandas_datareader import data as pdr# For time stamps
from datetime import datetimeimport warnings
warnings.filterwarnings('ignore')

1.2 数据集介绍

首先,获取数据并将其加载到内存中。我们将从雅虎财经网站获取我们的股票数据。雅虎金融是一个丰富的金融市场数据资源和工具,以寻找有吸引力的投资。为了从雅虎金融获得数据,我们将使用yfinance库,该库提供了一种线程化和Python化的方式从雅虎下载市场数据。查看本文了解更多关于yfnance的信息:使用Python可靠地下载历史市场数据

yf.pdr_override()# The tech stocks we'll use for this analysis
tech_list = ['AAPL', 'GOOG', 'MSFT', 'AMZN']# Set up End and Start times for data grab
tech_list = ['AAPL', 'GOOG', 'MSFT', 'AMZN']end = datetime.now()
start = datetime(end.year - 1, end.month, end.day)for stock in tech_list:globals()[stock] = yf.download(stock, start, end)company_list = [AAPL, GOOG, MSFT, AMZN]
company_name = ["APPLE", "GOOGLE", "MICROSOFT", "AMAZON"]for company, com_name in zip(company_list, company_name):company["company_name"] = com_namedf = pd.concat(company_list, axis=0)
df.tail(10)

数据描述
回顾我们数据的内容,我们可以看到数据是数字,日期是数据的索引。还请注意,数据中缺少周末。

快速提示:使用globals()是设置DataFrame名称的一种草率方法,但它很简单。现在我们有了数据,让我们进行一些基本的数据分析并检查我们的数据。

1.3 描述性统计

.describe()生成描述性统计信息。描述性统计包括总结数据集分布的中心趋势、分散度和形状的统计,不包括NaN值。
分析数字序列和对象序列,以及混合数据类型的DataFrame列集。输出将根据所提供的内容而变化。有关更多详细信息,请参阅以下注释。

# Summary Stats
AAPL.describe()

在这里插入图片描述
我们一年中只有255条记录,因为数据中不包括周末。

1.4数据的信息

.info()方法打印有关DataFrame的信息,包括索引dtype和列、非null值以及内存使用情况。

# General info
AAPL.info()

数据的信息

2. 探索性数据分析

2.1 股票的收盘价

收盘价是股票在正常交易日交易的最后价格。股票的收盘价是投资者用来跟踪其长期表现的标准基准。

sns.set_style('whitegrid')
plt.style.use("fivethirtyeight")
# Let's see a historical view of the closing price
plt.figure(figsize=(15, 10))
plt.subplots_adjust(top=1.25, bottom=1.2)for i, company in enumerate(company_list, 1):plt.subplot(2, 2, i)company['Adj Close'].plot()plt.ylabel('Adj Close')plt.xlabel(None)plt.title(f"Closing Price of {tech_list[i - 1]}")plt.tight_layout()

股票的收盘价

2.2 股票的交易量

交易量是指一段时间内(通常是一天内)易手的资产或证券的数量。例如,股票交易量是指每天开盘和收盘之间交易的证券股票数量。交易量以及交易量随时间的变化是技术交易者的重要输入。

# Now let's plot the total volume of stock being traded each day
plt.figure(figsize=(15, 10))
plt.subplots_adjust(top=1.25, bottom=1.2)for i, company in enumerate(company_list, 1):plt.subplot(2, 2, i)company['Volume'].plot()plt.ylabel('Volume')plt.xlabel(None)plt.title(f"Sales Volume for {tech_list[i - 1]}")plt.tight_layout()

股票的交易量
现在我们已经看到了收盘价和每天交易量的可视化,让我们继续计算股票的移动平均线。

2.3 股票的移动平均值

移动平均线(MA)是一种简单的技术分析工具,通过创建不断更新的平均价格来平滑价格数据。平均值是在特定的时间段内得出的,如10天、20分钟、30周或交易员选择的任何时间段。

ma_day = [10, 20, 50]for ma in ma_day:for company in company_list:column_name = f"MA for {ma} days"company[column_name] = company['Adj Close'].rolling(ma).mean()fig, axes = plt.subplots(nrows=2, ncols=2)
fig.set_figheight(10)
fig.set_figwidth(15)AAPL[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[0,0])
axes[0,0].set_title('APPLE')GOOG[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[0,1])
axes[0,1].set_title('GOOGLE')MSFT[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[1,0])
axes[1,0].set_title('MICROSOFT')AMZN[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[1,1])
axes[1,1].set_title('AMAZON')fig.tight_layout()

股票移动平均线可视化
我们在图中看到,测量移动平均值的最佳值是10天和20天,因为我们仍然可以在没有噪声的情况下捕捉数据中的趋势。

2.4 股票的平均日收益

现在我们已经做了一些基线分析,让我们继续深入研究。我们现在要分析股票的风险。为了做到这一点,我们需要更仔细地观察股票的每日变化,而不仅仅是其绝对值。让我们继续使用pandas来检索苹果股票的每日回报。

# We'll use pct_change to find the percent change for each day
for company in company_list:company['Daily Return'] = company['Adj Close'].pct_change()# Then we'll plot the daily return percentage
fig, axes = plt.subplots(nrows=2, ncols=2)
fig.set_figheight(10)
fig.set_figwidth(15)AAPL['Daily Return'].plot(ax=axes[0,0], legend=True, linestyle='--', marker='o')
axes[0,0].set_title('APPLE')GOOG['Daily Return'].plot(ax=axes[0,1], legend=True, linestyle='--', marker='o')
axes[0,1].set_title('GOOGLE')MSFT['Daily Return'].plot(ax=axes[1,0], legend=True, linestyle='--', marker='o')
axes[1,0].set_title('MICROSOFT')AMZN['Daily Return'].plot(ax=axes[1,1], legend=True, linestyle='--', marker='o')
axes[1,1].set_title('AMAZON')fig.tight_layout()

平均日收益

2.5 股票的平均回报率

现在让我们使用直方图来全面了解平均每日回报率。我们将使用seaborn在同一个图上创建直方图和kde图。

plt.figure(figsize=(12, 9))for i, company in enumerate(company_list, 1):plt.subplot(2, 2, i)company['Daily Return'].hist(bins=50)plt.xlabel('Daily Return')plt.ylabel('Counts')plt.title(f'{company_name[i - 1]}')plt.tight_layout()

股票平均回报率

2.6 不同股票收盘价格之间的相关性

在金融和投资行业中,相关性是一种衡量两个变量相对于彼此移动程度的统计数据,其值必须介于-1.0和+1.0之间。相关性衡量关联,但不显示 x 是否导致 y,反之亦然,或者关联是否由第三个因素引起。1

现在,如果我们想分析列表中所有股票的回报率,该怎么办?让我们继续构建一个DataFrame,其中包含每个股票数据帧的所有[‘Close’]列。

# Grab all the closing prices for the tech stock list into one DataFrameclosing_df = pdr.get_data_yahoo(tech_list, start=start, end=end)['Adj Close']# Make a new tech returns DataFrame
tech_rets = closing_df.pct_change()
tech_rets.head()

相关性
现在我们可以比较两只股票的每日百分比回报率,以检查其相关性。首先,让我们来看看一只股票与自身的比较。

# Comparing Google to itself should show a perfectly linear relationship
sns.jointplot(x='GOOG', y='GOOG', data=tech_rets, kind='scatter', color='seagreen')

相关性

# We'll use joinplot to compare the daily returns of Google and Microsoft
sns.jointplot(x='GOOG', y='MSFT', data=tech_rets, kind='scatter')

相关性
因此,现在我们可以看到,如果两只股票完全(并且正)相互关联,那么它们的日回报值之间应该存在线性关系。

Seabornpandas使得对技术股票代码列表中所有可能的股票组合进行重复比较分析变得非常容易。我们可以使用sns.pairplot()自动创建此图

# We can simply call pairplot on our DataFrame for an automatic visual analysis 
# of all the comparisons
sns.pairplot(tech_rets, kind='reg')

在这里插入图片描述
上面我们可以看到所有股票之间每日回报的所有关系。虽然只简单调用 sns.pairplot() ,但我们也可以使用 sns.PairGrid() 来完全控制图形,包括对角线、上三角和下三角中的绘图类型。下面是一个利用 seaborn 的全部功能来实现这一结果的示例。

# Set up our figure by naming it returns_fig, call PairPLot on the DataFrame
return_fig = sns.PairGrid(tech_rets.dropna())# Using map_upper we can specify what the upper triangle will look like.
return_fig.map_upper(plt.scatter, color='purple')# We can also define the lower triangle in the figure, inclufing the plot type (kde) 
# or the color map (BluePurple)
return_fig.map_lower(sns.kdeplot, cmap='cool_d')# Finally we'll define the diagonal as a series of histogram plots of the daily return
return_fig.map_diag(plt.hist, bins=30)

相关性

# Set up our figure by naming it returns_fig, call PairPLot on the DataFrame
returns_fig = sns.PairGrid(closing_df)# Using map_upper we can specify what the upper triangle will look like.
returns_fig.map_upper(plt.scatter,color='purple')# We can also define the lower triangle in the figure, inclufing the plot type (kde) or the color map (BluePurple)
returns_fig.map_lower(sns.kdeplot,cmap='cool_d')# Finally we'll define the diagonal as a series of histogram plots of the daily return
returns_fig.map_diag(plt.hist,bins=30)

相关性
最后,我们还可以做一个相关图,以获得股票每日回报值之间相关性的实际数值。通过比较收盘价,我们看到微软和苹果之间存在有趣的关系。

plt.figure(figsize=(12, 10))plt.subplot(2, 2, 1)
sns.heatmap(tech_rets.corr(), annot=True, cmap='summer')
plt.title('Correlation of stock return')plt.subplot(2, 2, 2)
sns.heatmap(closing_df.corr(), annot=True, cmap='summer')
plt.title('Correlation of stock closing price')

在这里插入图片描述
正如我们在 "配对图 "中猜测的那样,我们可以从数字和视觉上看到,微软和亚马逊的每日股票回报率相关性最强。同样有趣的是,所有科技公司都呈正相关。

2.7 我们投资于某只股票的风险价值

量化风险的方法有很多,其中一种最基本的方法是利用我们收集到的每日百分比收益信息,将预期收益与每日收益的标准差进行比较。

rets = tech_rets.dropna()area = np.pi * 20plt.figure(figsize=(10, 8))
plt.scatter(rets.mean(), rets.std(), s=area)
plt.xlabel('Expected return')
plt.ylabel('Risk')for label, x, y in zip(rets.columns, rets.mean(), rets.std()):plt.annotate(label, xy=(x, y), xytext=(50, 50), textcoords='offset points', ha='right', va='bottom', arrowprops=dict(arrowstyle='-', color='blue', connectionstyle='arc3,rad=-0.3'))

风险价值

3. 预测 APPLE 公司股票的收盘价

# Get the stock quote
df = pdr.get_data_yahoo('AAPL', start='2012-01-01', end=datetime.now())
# Show teh data
df

苹果股价

plt.figure(figsize=(16,6))
plt.title('Close Price History')
plt.plot(df['Close'])
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.show()

在这里插入图片描述

# Create a new dataframe with only the 'Close column 
data = df.filter(['Close'])
# Convert the dataframe to a numpy array
dataset = data.values
# Get the number of rows to train the model on
training_data_len = int(np.ceil( len(dataset) * .95 ))training_data_len
2648
# Scale the data
from sklearn.preprocessing import MinMaxScalerscaler = MinMaxScaler(feature_range=(0,1))
scaled_data = scaler.fit_transform(dataset)scaled_data
array([[0.00439887],[0.00486851],[0.00584391],...,[0.7735962 ],[0.78531794],[0.767884  ]])

4. 数据建模()

4.1 数据准备(拆分为训练集和测试集)

# Create the training data set 
# Create the scaled training data set
train_data = scaled_data[0:int(training_data_len), :]
# Split the data into x_train and y_train data sets
x_train = []
y_train = []for i in range(60, len(train_data)):x_train.append(train_data[i-60:i, 0])y_train.append(train_data[i, 0])if i<= 61:print(x_train)print(y_train)print()# Convert the x_train and y_train to numpy arrays 
x_train, y_train = np.array(x_train), np.array(y_train)# Reshape the data
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
# x_train.shape
from keras.models import Sequential
from keras.layers import Dense, LSTM# Build the LSTM model
model = Sequential()
model.add(LSTM(128, return_sequences=True, input_shape= (x_train.shape[1], 1)))
model.add(LSTM(64, return_sequences=False))
model.add(Dense(25))
model.add(Dense(1))# Compile the model
model.compile(optimizer='adam', loss='mean_squared_error')# Train the model
model.fit(x_train, y_train, batch_size=1, epochs=1)

在这里插入图片描述

# Create the testing data set
# Create a new array containing scaled values from index 1543 to 2002 
test_data = scaled_data[training_data_len - 60: , :]
# Create the data sets x_test and y_test
x_test = []
y_test = dataset[training_data_len:, :]
for i in range(60, len(test_data)):x_test.append(test_data[i-60:i, 0])# Convert the data to a numpy array
x_test = np.array(x_test)# Reshape the data
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1 ))# Get the models predicted price values 
predictions = model.predict(x_test)
predictions = scaler.inverse_transform(predictions)# Get the root mean squared error (RMSE)
rmse = np.sqrt(np.mean(((predictions - y_test) ** 2)))
rmse
4.982936594544208
# Plot the data
train = data[:training_data_len]
valid = data[training_data_len:]
valid['Predictions'] = predictions
# Visualize the data
plt.figure(figsize=(16,6))
plt.title('Model')
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.plot(train['Close'])
plt.plot(valid[['Close', 'Predictions']])
plt.legend(['Train', 'Val', 'Predictions'], loc='lower right')
plt.show()

股价预测

# Show the valid and predicted prices
valid

股价预测


  1. Correlation: What It Means in Finance and the Formula for Calculating It ↩︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/318227.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AMBA-CHI协议详解(二)

《AMBA 5 CHI Architecture Specification》 文章目录 2.1 Channels综述2.2 Channel域段2.2.1 request fields2.2.2 Response fields2.2.3 Snoop request fields2.2.4 Data fields 2.3 事务结构2.3.1 Read transactions2.3.1.1 Allocating Read2.3.1.2 Non-allocating Read 2.…

RabbitMQ中的交换机类型

交换机类型 可以看到&#xff0c;在订阅模型中&#xff0c;多了一个exchange角色&#xff0c;而且过程略有变化&#xff1a; Publisher&#xff1a;生产者&#xff0c;不再发送消息到队列中&#xff0c;而是发给交换机 Exchange&#xff1a;交换机&#xff0c;一方面&#xff…

万兆以太网MAC设计(11)完整UDP协议栈仿真

文章目录 前言一、模块接口二、IP模块与ARP模块之间的联系三、整体协议栈仿真总结&#xff1a; 前言 目前除了巨帧处理逻辑之外&#xff0c;所有的准备工作都已经结束了&#xff0c;先进行整体的功能验证。 一、模块接口 所有模块接口皆采用AXIS数据流的形式&#xff0c;其中…

基于残差神经网络的汉字识别系统+pyqt前段界面设计

研究内容: 中文汉字识别是一项具有挑战性的任务&#xff0c;涉及到对中文字符的准确分类。在这个项目中&#xff0c;目标是构建一个能够准确识别中文汉字的系统。这个任务涉及到数据集的收集、预处理、模型训练和评估等步骤。尝试了使用残差神经网络&#xff08;ResNet&#x…

pyqt拖入图片并显示

pyqt拖入图片并显示 介绍效果代码 介绍 像拖入文本一样&#xff0c;把图片拖入到窗体中显示。 效果 代码 import sys from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QVBoxLayout from PyQt5.QtGui import QPixmap, QDragEnterEvent, QDropEvent from PyQt5.Q…

mysql 数据转excel文件

mysql 数据转excel文件 缘由 为售后拉取数据&#xff0c;用navicat太墨迹了&#xff0c;用python写一个main方法跑一下&#xff1b; 1.抽取共同方法&#xff0c;封装成传入mysql&#xff0c;直接下载成excel&#xff1b; 2.写入所有sql语句&#xff0c;传入参数&#xff1b; 代…

0418EmpTomCat项目 初次使用ajax实现局部动态离职

0418EmpTomCat项目包-CSDN博客 数据库字段&#xff1a; 员工部门表 分页查询&#xff1b; 多条件查询&#xff1b; 添加新员工&#xff1b; ajax点击离职操作效果&#xff1a;

如何搭建本地的 NPM 私有仓库 Nexus

NPM 本地私有仓库&#xff0c;是在本地搭建NPM私有仓库&#xff0c;对公司级别的组件库进行管理。在日常开发中&#xff0c;经常会遇到抽象公共组件的场景&#xff0c;在项目内部进行公用。新的项目开始时&#xff0c;也会拷贝一份创建一个新的项目&#xff0c;这样做不易于管理…

图像处理1,灰度,data,for循环批处理图片,图片属性查看,图片单通道查看,椒盐噪声的生成,滤波处理,图像分割

图像处理1 灰度处理data库的使用for循环批处理图像对图像属性的查看图片类型图片尺寸图片宽度图像高度通道数总像素个数最大像素值最小像素值&#xff0c;像素平均值图像点像素值 for循环分别显示图像rgb通道椒盐噪声的生成中值滤波处理高斯模糊处理图像切割 灰度处理 from sk…

【跟马少平老师学AI】-【神经网络是怎么实现的】(八)循环神经网络

一句话归纳&#xff1a; 1&#xff09;词向量与句子向量的循环神经网络&#xff1a; x(i)为词向量。h(i)为含前i个词信息的向量。h(t)为句向量。 2&#xff09;循环神经网络的局部。 每个子网络都是标准的全连接神经网络。 3&#xff09;对句向量增加全连接层和激活函数。 每个…

Linux专栏05:Linux基本指令之目录处理指令

博客主页&#xff1a;Duck Bro 博客主页系列专栏&#xff1a;Linux专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ Linux基本指令之目录处理指令 编号&#xff1a;05 文章目录 Linux基…

微软如何打造数字零售力航母系列科普04 - 微软联合Adobe在微软365应用程序中工作时推出新的生成式AI功能

微软和Adobe正在合作&#xff0c;将情境营销见解和工作流程引入微软Copilot&#xff0c;以提供生成的人工智能功能&#xff0c;使营销人员和营销团队能够在自然的工作流程中实现更多目标。 这些新的集成功能将在生产力和协作工具&#xff08;如Outlook、Teams和Word&#xff0…

(51单片机)第十三章-STC系列51单片机功能介绍

13.1 单片机空闲与掉电模式的应用 1. 空闲模式 当单片机进入空闲模式时&#xff0c;除CPU处于休眠状态外&#xff0c;其余硬件全部处于活动状态&#xff0c;芯片中程序未涉及的数据存储器和特殊功能寄存器中的数据在空闲模式期间都将保持原值。假若定时器正在运行&#xff0c;…

《QT实用小工具·四十七》可交互的创意动态按钮

1、概述 源码放在文章末尾 该项目实现了可交互的创意动态按钮&#xff0c;包含如下功能&#xff1a; 所有颜色自定义 鼠标悬浮渐变 两种点击效果&#xff1a;鼠标点击渐变 / 水波纹动画&#xff08;可多层波纹叠加&#xff09; 额外鼠标移入/移出/按下/弹起的实时/延迟共8种事…

ctf web-部分

** web基础知识 ** *一.反序列化 在PHP中&#xff0c;反序列化通常是指将序列化后的字节转换回原始的PHP对象或数据结构的过程。PHP中的序列化和反序列化通过serialize()和unserialize()函数实现。 1.序列化serialize() 序列化说通俗点就是把一个对象变成可以传输的字符串…

Unity3d 学习之按钮绑定事件

创建测试脚本 using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.UI;public class myTest : MonoBehaviour {// Start is called before the first frame updatepublic Button _codeBindBtn null;void Start(){if (_codeBi…

数字旅游以科技创新为动力:推动旅游服务的智能化、网络化和个性化发展,满足游客日益增长的多元化、个性化需求

目录 一、引言 二、科技创新推动旅游服务智能化发展 1、智能化技术的引入与应用 2、智能化提升旅游服务效率与质量 三、科技创新推动旅游服务网络化发展 1、网络化平台的构建与运营 2、网络化拓宽旅游服务渠道与范围 四、科技创新推动旅游服务个性化发展 1、个性化需求…

Golang | Leetcode Golang题解之第63题不同路径II

题目&#xff1a; 题解&#xff1a; func uniquePathsWithObstacles(obstacleGrid [][]int) int {n, m : len(obstacleGrid), len(obstacleGrid[0])f : make([]int, m)if obstacleGrid[0][0] 0 {f[0] 1}for i : 0; i < n; i {for j : 0; j < m; j {if obstacleGrid[i]…

node应用部署运行案例

生产环境: 系统&#xff1a;linux centos 7.9 node版本&#xff1a;v16.14.0 npm版本:8.3.1 node应用程序结构 [rootRainYun-Q7c3pCXM wiki]# dir assets config.yml data LICENSE node_modules nohup.out output.log package.json server wiki.log [rootRainYun-Q7c…

华为Pura70发布,供应链公司进入静默保密期

保密措施&#xff1a;与华为Pura70发布相关的供应链公司在产品发布前后处于静默保密期。这可能是由于华为对于手机供应链的一些信息处于保密状态&#xff0c;尤其是关于麒麟芯片的代工厂商等敏感信息。这种保密措施有助于保持产品的神秘感&#xff0c;调动用户的好奇心&#xf…