LeetCode 110.平衡二叉树(Java/C/Python3/Go实现含注释说明,Easy)

标签

  • 深度优先搜索
  • 递归

题目描述

给定一个二叉树,判断它是否是高度平衡的二叉树。

本题中,一棵高度平衡的二叉树定义为:

一个二叉树每个节点的左右两个子树的高度差的绝对值不超过1。

原题:LeetCode 110.平衡二叉树

思路及实现

方法一:自顶向下递归(纯递归)

思路

定义函数 height\texttt{height}height,用于计算二叉树中的任意一个节点 ppp 的高度:
在这里插入图片描述
为了判断二叉树是否平衡,我们可以采用一个自顶向下的递归方法。该方法通过计算每个节点左右子树的高度差,并与 1 进行比较来判断当前子树是否平衡。如果当前子树平衡,则继续递归检查其子节点。

代码实现
Java版本
class Solution {  // 判断二叉树是否平衡  public boolean isBalanced(TreeNode root) {  // 如果根节点为空(即树为空),则树是平衡的  if (root == null) {  return true;  }  // 否则,判断当前节点的左右子树高度差是否不超过1,并且左右子树都是平衡的  else {  return Math.abs(height(root.left) - height(root.right)) <= 1 &&   isBalanced(root.left) && // 递归判断左子树是否平衡  isBalanced(root.right);  // 递归判断右子树是否平衡  }  }  // 计算树的高度  public int height(TreeNode root) {  // 如果根节点为空(即树为空或到达叶子节点的下一层),则返回高度为0  if (root == null) {  return 0;  }  // 否则,返回当前节点左子树和右子树中的较大高度加1(当前节点的高度为其子树的最大高度加1)  else {  return Math.max(height(root.left), height(root.right)) + 1;  }  }  // TreeNode类(假设已经在外部定义)  // class TreeNode {  //     int Val;  //     TreeNode Left;  //     TreeNode Right;  //     TreeNode(int val) { Val = val; }  // }  }

说明:isBalanced 方法检查树是否平衡,同时递归地计算左右子树的高度。height 方法返回树的高度。

C语言版本
int height(struct TreeNode* root) {if (root == NULL) {return 0;} else {return fmax(height(root->left), height(root->right)) + 1;}
}bool isBalanced(struct TreeNode* root) {if (root == NULL) {return true;} else {return fabs(height(root->left) - height(root->right)) <= 1 && isBalanced(root->left) && isBalanced(root->right);}
}

说明:在C语言中,我们使用了fmax函数来计算两个整数中的较大值,并且fabs函数用于计算绝对值。

Python3版本
class Solution:def isBalanced(self, root: TreeNode) -> bool:def height(root: TreeNode) -> int:if not root:return 0return max(height(root.left), height(root.right)) + 1if not root:return Truereturn abs(height(root.left) - height(root.right)) <= 1 and self.isBalanced(root.left) and self.isBalanced(root.right)

说明:在Python中,我们约定如果子树不平衡,则height函数返回-1,这样可以在isBalanced中直接利用返回值进行判断。

Golang版本
package mainimport ("math"
)func isBalanced(root *TreeNode) bool {if root == nil {return true}return abs(height(root.Left) - height(root.Right)) <= 1 && isBalanced(root.Left) && isBalanced(root.Right)
}func height(root *TreeNode) int {if root == nil {return 0}return max(height(root.Left), height(root.Right)) + 1
}func max(x, y int) int {if x > y {return x}return y
}func abs(x int) int {if x < 0 {return -1 * x}return x
}作者:力扣官方题解
链接:https://leetcode.cn/problems/balanced-binary-tree/solutions/377216/ping-heng-er-cha-shu-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

说明:在Golang版本中,我们使用了一个辅助函数dfs来进行深度优先搜索,该函数返回子树的高度和是否平衡两个值。如果子树不平衡,则dfs返回-1和false。absmax是辅助函数,分别用于计算绝对值和取两个整数中的较大值。

复杂度分析

  • 时间复杂度
    时间复杂度为 O(n),其中 n 是二叉树中的节点数。这是因为在递归的过程中,我们需要访问每一个节点来计算其左右子树的高度,并且对每个节点都要执行一次判断是否平衡的操作(比较高度差以及递归检查子树是否平衡)。每个节点最多被访问一次,因此总的时间复杂度是线性的。

  • 空间复杂度
    空间复杂度取决于递归调用的深度,也就是树的深度。在最坏的情况下,当树完全不平衡时(例如每个节点都只有左子节点或右子节点),递归的深度会达到树的高度,也就是 O(n)。此时,递归调用栈需要存储 O(n) 个节点信息。

然而,在平均情况下,二叉树是平衡的,其深度通常是对数级别的,即 O(log n)。因此,在平均情况下,空间复杂度是 O(log n)。

但需要注意的是,空间复杂度并不只包括递归调用栈的开销,还包括系统为函数调用分配的其他资源(如局部变量等)。但在判断二叉树是否平衡的问题中,这些开销通常相对较小,可以忽略不计。

  • 总结
    时间复杂度:O(n)
    空间复杂度(最坏情况):O(n)
    空间复杂度(平均情况):O(log n)
    其中,n 是二叉树中的节点数。

方法一:自顶向下递归(带后序遍历)

思路

方法一由于是自顶向下递归,因此对于同一个节点,函数 height 会被重复调用,导致时间复杂度较高。如果使用自底向上的做法,则对于每个节点,函数 height 只会被调用一次。

自底向上递归的做法类似于后序遍历,对于当前遍历到的节点,先递归地判断其左右子树是否平衡,再判断以当前节点为根的子树是否平衡。如果一棵子树是平衡的,则返回其高度(高度一定是非负整数),否则返回 −1-1−1。如果存在一棵子树不平衡,则整个二叉树一定不平衡。

方式二:带后序遍历的递归方法(自底向上)

思路

带后序遍历的递归方法(自底向上)在遍历到每个节点时,首先递归地检查其左右子树是否平衡,并返回子树的高度。如果子树不平衡(即高度差大于1),则立即返回-1表示不平衡,并向上传递这个信息。如果子树平衡,则返回其高度,继续向上传递。这样,在遍历到根节点时,就可以知道整棵树是否平衡。

代码实现

Java版本
class TreeNode {int val;TreeNode left;TreeNode right;TreeNode(int x) { val = x; }
}public class Solution {public boolean isBalanced(TreeNode root) {return height(root) != -1;}private int height(TreeNode node) {if (node == null) {return 0;}int leftHeight = height(node.left);if (leftHeight == -1) {return -1;}int rightHeight = height(node.right);if (rightHeight == -1) {return -1;}if (Math.abs(leftHeight - rightHeight) > 1) {return -1;}return Math.max(leftHeight, rightHeight) + 1;}
}

说明:在Java版本中,isBalanced方法调用height方法来判断树是否平衡。height方法递归地计算每个节点的高度,并在发现不平衡时返回-1。

C语言版本
#include <limits.h>typedef struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;
} TreeNode;int height(TreeNode* node) {if (node == NULL) {return 0;}int leftHeight = height(node->left);if (leftHeight == -1) {return -1;}int rightHeight = height(node->right);if (rightHeight == -1) {return -1;}if (abs(leftHeight - rightHeight) > 1) {return -1;}return MAX(leftHeight, rightHeight) + 1;
}bool isBalanced(TreeNode* root) {return height(root) != -1;
}

说明:在C语言版本中,同样使用height函数来计算节点高度并判断平衡性。注意这里使用了limits.h中的INT_MIN来表示-1的整数类型(但在这个例子中我们直接返回-1),以及自定义的MAX宏来获取两个数中的较大值(或者可以使用#include <stdlib.h>中的max函数,如果存在的话)。

Python3版本
class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightdef isBalanced(root):def height(node):if not node:return 0leftHeight = height(node.left)if leftHeight == -1:return -1rightHeight = height(node.right)if rightHeight == -1:return -1if abs(leftHeight - rightHeight) > 1:return -1return max(leftHeight, rightHeight) + 1return height(root) != -1

说明:在Python3版本中,我们定义了一个嵌套函数height来计算节点高度,并在isBalanced函数中调用它。Python中没有类型定义,所以我们直接使用类定义来创建树节点。

Golang版本
package main  import (  "fmt"  "math"  
)  type TreeNode struct {  Val   int  Left  *TreeNode  Right *TreeNode  
}  func isBalanced(root *TreeNode) bool {  return height(root) != -1  
}  func height(node *TreeNode) int {  if node == nil {  return 0  }  leftHeight := height(node.Left)  if leftHeight == -1 {  return -1  }  rightHeight := height(node.Right)  if rightHeight == -1 {  return -1  }  if math.Abs(float64(leftHeight-rightHeight)) > 1 {  return -1  }  return int(math.Max(float64(leftHeight), float64(rightHeight))) + 1  
}  

复杂度分析

  • 时间复杂度:O(n),其中n是二叉树中的节点数。每个节点最多被访问一次,因此总的时间复杂度是线性的。
  • 空间复杂度:O(h),其中h是二叉树的高度。这是由递归调用栈的深度决定的。在最坏的情况下(树完全不平衡),空间复杂度为O(n)。然而,在平均情况下,二叉树是平衡的,其高度通常是对数级别的,即O(log n)。但需要注意的是,这里的空间复杂度不包括可能由操作系统分配的系统

总结

针对上面提到的自顶向下递归(方式一)和自底向上递归(方式二)的二叉树平衡性检查方法,我们可以进行如下总结:

方式优点缺点时间复杂度空间复杂度
方式一(自顶向下递归)直观易理解,直接根据定义判断可能产生大量重复计算,效率较低O(n)O(h)(h为树的高度,最坏情况下为O(n))
方式二(自底向上递归)利用后序遍历减少重复计算,效率高依赖于递归和高度差的比较,可能难以理解O(n)O(h)(h为树的高度,最坏情况下为O(n))

注意:在方式二中,虽然空间复杂度在最坏情况下为O(n),但这是因为递归调用栈的深度可能达到n。在平均情况下,对于平衡树,空间复杂度为O(log n)。

相似题目

以下是一些与判断二叉树平衡性相关的相似题目,它们涉及树的遍历、深度或高度的计算等概念:

相似题目难度链接
LeetCode 104 二叉树的最大深度简单LeetCode-104
LeetCode 110 平衡二叉树简单LeetCode-110
LeetCode 111 二叉树的最小深度简单LeetCode-111
LeetCode 543 二叉树的直径简单LeetCode-543
LeetCode 124 二叉树中的最大路径和困难LeetCode-124

这些题目都涉及到对二叉树的遍历和深度/高度的计算,可以通过递归或迭代的方式解决。其中,LeetCode 110题目与本文讨论的二叉树平衡性检查最为相似。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/318577.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

『跨端框架』Flutter环境搭建

『跨端框架』Flutter环境搭建 资源网站简介跨平台高性能发展历程跨平台框架的比较成功案例 环境搭建&#xff08;windows&#xff09;基础环境搭建Windows下的安卓环境搭建Mac下的安卓环境配置资源镜像JDKAndroid StudioFlutter SDK问题一问题二问题三修改项目中的Flutter版本 …

Android14之解决报错:libncurses.so.5与libtinfo.so.5缺少问题(二百零九)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

【数据库主从架构】

【数据库主从架构】 1. 什么是数据库的主从架构1.1 主从复制1.1.1 MySQL的主从主从复制技术三级目录 1. 什么是数据库的主从架构 随着公司业务线的增多&#xff0c;各种数据都在迅速增加&#xff0c;并且数据的读取流量也大大增加&#xff0c;就面临着数据安全问题&#xff0c;…

Spring Boot | Spring Security ( SpringBoot安全管理 )、Spring Security中 的 “自定义用户认证“

目录 : Spring Boot 安全管理 &#xff1a;一、Spring Security 介绍二、Spring Security 快速入门2.1 基础环境搭建 :① 创建Spring Boot 项目② 创建 html资源文件③ 编写Web控制层 2.2 开启安全管理效果测试 :④ 添加 spring-boot-starter-security 启动器⑤ 项目启动测试 三…

Vue Cli脚手架—安装Nodejs和Vue Cli

一&#xff0c;Vue Cli 文档地址: https://cli.vuejs.org/zh/ 二&#xff0c;.环境配置&#xff0c;搭建项目 1.安装node.js 2.下载 node.js10.16.3 地址: https://nodejs.org/en/blog/release/v10.16.3/ 3.安装 node.js10.16.3 , 直接下一步即可, 安装到 d:\program\nodejs…

【kettle006】kettle访问华为openGauss高斯数据库并处理数据至execl文件

1.一直以来想写下基于kettle的系列文章&#xff0c;作为较火的数据ETL工具&#xff0c;也是日常项目开发中常用的一款工具&#xff0c;最近刚好挤时间梳理、总结下这块儿的知识体系。 2.熟悉、梳理、总结下华为openGauss高斯数据库相关知识体系 3.欢迎批评指正&#xff0c;跪谢…

浅论汽车研发项目数字化管理之道

随着汽车行业竞争不断加剧&#xff0c;汽车厂商能否快速、高质地推出贴合市场需求的新车型已经成为车企竞争的重要手段&#xff0c;而汽车研发具备流程复杂、专业领域多、协作难度大、质量要求高等特点&#xff0c;企业如果缺少科学健全的项目管理体系&#xff0c;将会在汽车研…

低空经济+飞行汽车:eVTOL技术详解

低空经济是以各种有人驾驶和无人驾驶航空器的各类低空飞行活动为牵引&#xff0c;辐射带动相关领域融合发展的综合性经济形态。它广泛体现于第一、第二、第三产业之中&#xff0c;在促进经济发展、加强社会保障、服务国防事业等方面发挥着日益重要的作用。 飞行汽车&#xff0c…

SpringBoot配置HTTPS及开发调试

前言 在实际开发过程中&#xff0c;如果后端需要启用https访问&#xff0c;通常项目启动后配置nginx代理再配置https&#xff0c;前端调用时高版本的chrome还会因为证书未信任导致调用失败&#xff0c;通过摸索整理一套开发调试下的https方案&#xff0c;特此分享 后端配置 …

“酒店涨价?火车票难求?看‘房贷自由族’如何玩转最燃五一“

今年五一&#xff0c;很可能是近几年旅游最疯狂的一年——虽然酒店价格狂飙好几倍&#xff0c;也抢不到火车票&#xff0c;人们却依然有着疯狂的出游和消费欲望。 ​最直接的原因大概是很多人离开了房贷&#xff0c;活明白了吧。就拿我身边的一些房奴们来说&#xff0c;已经陆…

大数据面试题 —— Spark数据倾斜及其解决方案

目录 1 调优概述2 数据倾斜发生时的现象3 数据倾斜发生的原理4 如何定位导致数据倾斜的代码4.1 某个 task 执行特别慢的情况4.2 某个 task 莫名其妙内存溢出的情况5 查看导致数据倾斜的 key 的数据分布情况6 数据倾斜的解决方案6.1 使用 Hive ETL 预处理数据6.2 过滤少数导致倾…

【Java EE】Mybatis之XML详解

文章目录 &#x1f38d;配置数据库连接和MyBatis&#x1f340;写持久层代码&#x1f338;添加mapper接口&#x1f338;添加UserInfoXMLMapper.xml&#x1f338;单元测试 &#x1f332;CRUD&#x1f338;增(Insert)&#x1f338;删(Delete)&#x1f338;改(Update)&#x1f338;…

GaussDB数据库事务管理

一、引言 事务管理是数据库系统中至关重要的一部分&#xff0c;它确保了数据库的一致性和可靠性。在GaussDB数据库中&#xff0c;事务管理不仅遵循传统的ACID特性&#xff0c;还提供了一些高级功能。本文将深入探讨GaussDB数据库事务管理的各个方面。 二、事务的基本概念 2.1…

es环境安装及php对接使用

Elasticsearch Elasticsearch 是一个分布式、高扩展、高实时的搜索与数据分析引擎。它提供了一个分布式多用户能力的全文搜索引擎&#xff0c;基于RESTful web接口。Elasticsearch是用Java语言开发的&#xff0c;并作为Apache许可条款下的开放源码发布&#xff0c;是一种流行的…

【小沐学Java】VSCode搭建Java开发环境

文章目录 1、简介2、安装VSCode2.1 简介2.2 安装 3、安装Java SDK3.1 简介3.2 安装3.3 配置 4、安装插件Java Extension Pack4.1 简介4.2 安装4.3 配置 结语 1、简介 2、安装VSCode 2.1 简介 Visual Studio Code 是一个轻量级但功能强大的源代码编辑器&#xff0c;可在桌面上…

FP16、BF16、INT8、INT4精度模型加载所需显存以及硬件适配的分析

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…

让抖音引流更简单,利用自动评论引流策略

在当前的社会环境中&#xff0c;抖音已经成为了许多人日常生活中不可或缺的一部分。无论是年轻人还是中老年人&#xff0c;都对抖音充满了热情。然而&#xff0c;对于一些想要通过抖音变现的人来说&#xff0c;他们可能会感到困惑&#xff0c;不知道如何操作。今天&#xff0c;…

rust疑难杂症

rust疑难杂症解决 边碰到边记录&#xff0c;后续可能会逐步增加&#xff0c;备查 cargo build时碰到 Blocking waiting for file lock on package cache 原因是Cargo 无法获取对包缓存的文件锁&#xff0c; 有时vscode中项目比较多&#xff0c;如果其中某些库应用有问题&…

nginx--自定义日志跳转长连接文件缓存状态页

自定义日志服务 [rootlocalhost ~]# cat /apps/nginx/conf/conf.d/pc.conf server {listen 80;server_name www.fxq.com;error_log /data/nginx/logs/fxq-error.log info;access_log /data/nginx/logs/fxq-access.log main;location / {root /data/nginx/html/pc;index index…

golang 基础知识细节回顾

之前学习golang的速度过于快&#xff0c;部分内容有点囫囵吞枣的感觉&#xff0c;写gorm过程中有很多违反我常识的地方&#xff0c;我通过复习去修正了我之前认知错误和遗漏的地方。 itoa itoa自增的作用在编辑error code时候作用很大&#xff0c;之前编辑springboot的error c…