线性代数之矩阵特征值与特征向量的数值求解方法

文章目录

  • 前言
  • 1. 幂迭代法(Power Iteration)
    • 幂法与反幂法求解矩阵特征值
    • 幂法求最大特征值
    • 编程实现
    • 补充说明
  • 2. 逆幂迭代法(Inverse Iteration)
    • 移位反幂法
  • 3. QR 算法(QR Algorithm)——稠密矩阵
    • 理论推导
    • 编程实现
  • 4. 雅可比方法(Jacobi Method)——对称矩阵
    • 编程实现
  • 5. Lanczos 算法(稀疏矩阵)
  • 6. 分治法
  • 7. 方法选择指南
  • 8. 关键公式与说明
  • 参考文献

前言

定n×n维矩阵A,满足下式的数λ称作矩阵A的一个特征值:
A u = λ u Au = \lambda u Au=λu
推广形式

特征值问题可推广到更一般的形式。假设 u = f ( x ) u = f(x) u=f(x) 是一个连续函数, A = d d x A = \frac{d}{dx} A=dxd 表示微分运算,则二阶微分方程:
d 2 u d x 2 = k 2 u \frac{d^2u}{dx^2} = k^2u dx2d2u=k2u
可表示为:
A 2 u = k 2 u A^2u = k^2u A2u=k2u
这是特征值问题在微分算子中的表现形式。


特征方程与求解方法

根据定义 ( A − λ I ) u = 0 (A - \lambda I)\mathbf{u} = 0 (AλI)u=0
A − λ I A - \lambda I AλI 非奇异,则方程只有零解。因此,特征值需满足:
det ⁡ ( A − λ I ) = 0 \det(A - \lambda I) = 0 det(AλI)=0
此方程称为特征方程,其根即为矩阵 A A A 的特征值。


示例

给定矩阵:
A = [ 1 2 3 2 ] A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} A=[1322]
其特征方程为:
det ⁡ [ 1 − λ 2 3 2 − λ ] = ( 1 − λ ) ( 2 − λ ) − 6 = 0 \det\begin{bmatrix} 1 - \lambda & 2 \\ 3 & 2 - \lambda \end{bmatrix} = (1 - \lambda)(2 - \lambda) - 6 = 0 det[1λ322λ]=(1λ)(2λ)6=0
展开并化简:
λ 2 − 3 λ − 4 = 0 ⟹ λ 1 = 4 , λ 2 = − 1 \lambda^2 - 3\lambda - 4 = 0 \implies \lambda_1 = 4,\ \lambda_2 = -1 λ23λ4=0λ1=4, λ2=1

然而,对于高阶矩阵,特征值的解析解通常难以直接计算,需借助数值方法(如QR算法、幂迭代法等)进行求解。


1. 幂迭代法(Power Iteration)

目标:求解矩阵的模最大特征值及其对应特征向量。

幂法与反幂法求解矩阵特征值

本节介绍如何使用幂法和反幂法分别求解矩阵的模最大和模最小特征值。给定矩阵 A A A,假设其有 n n n 个实特征值:
∣ λ 1 ∣ > ∣ λ 2 ∣ > ⋯ > ∣ λ n ∣ |λ_1| > |λ_2| > \cdots > |λ_n| λ1>λ2>>λn
对应的特征向量为 u 1 , u 2 , … , u n u_1, u_2, \ldots, u_n u1,u2,,un


幂法求最大特征值

步骤说明:

  1. 初始向量选取:
    随机选取初始向量 x 1 x_1 x1,可表示为特征向量的线性组合:
    x 1 = c 1 u 1 + c 2 u 2 + ⋯ + c n u n x_1 = c_1u_1 + c_2u_2 + \cdots + c_nu_n x1=c1u1+c2u2++cnun

  2. 迭代计算:

    • 第一次迭代:
      A x 1 = c 1 A u 1 + c 2 A u 2 + ⋯ + c n A u n = λ 1 c 1 x 2 Ax_1 = c_1Au_1 + c_2Au_2 + \cdots + c_nAu_n = λ_1c_1x_2 Ax1=c1Au1+c2Au2++cnAun=λ1c1x2
      规范化后得到:
      x 2 = u 1 + c 2 c 1 λ 2 λ 1 u 2 + ⋯ + c n c 1 λ n λ 1 u n x_2 = u_1 + \frac{c_2}{c_1} \frac{λ_2}{λ_1}u_2 + \cdots + \frac{c_n}{c_1} \frac{λ_n}{λ_1}u_n x2=u1+c1c2λ1λ2u2++c1cnλ1λnun

    • 第二次迭代:
      A x 2 = λ 1 u 1 + c 2 c 1 λ 2 2 λ 1 u 2 + ⋯ + c n c 1 λ n 2 λ 1 u n = λ 1 x 3 Ax_2 = λ_1u_1 + \frac{c_2}{c_1} \frac{λ_2^2}{λ_1}u_2 + \cdots + \frac{c_n}{c_1} \frac{λ_n^2}{λ_1}u_n = λ_1x_3 Ax2=λ1u1+c1c2λ1λ22u2++c1cnλ1λn2un=λ1x3
      规范化后得到:
      x 3 = u 1 + c 2 c 1 λ 2 2 λ 1 2 u 2 + ⋯ + c n c 1 λ n 2 λ 1 2 u n x_3 = u_1 + \frac{c_2}{c_1} \frac{λ_2^2}{λ_1^2}u_2 + \cdots + \frac{c_n}{c_1} \frac{λ_n^2}{λ_1^2}u_n x3=u1+c1c2λ12λ22u2++c1cnλ12λn2un

  3. 通用迭代公式:
    k k k 次迭代的通式为:
    x k + 1 = u 1 + c 2 c 1 λ 2 k λ 1 k u 2 + ⋯ + c n c 1 λ n k λ 1 k u n x_{k+1} = u_1 + \frac{c_2}{c_1} \frac{λ_2^k}{λ_1^k}u_2 + \cdots + \frac{c_n}{c_1} \frac{λ_n^k}{λ_1^k}u_n xk+1=u1+c1c2λ1kλ2ku2++c1cnλ1kλnkun

  4. 收敛性分析:
    由于 ∣ λ 1 ∣ > ∣ λ i ∣ ( i ≥ 2 ) |λ_1| > |λ_i| \, (i \geq 2) λ1>λi(i2),当 k k k 充分大时,高阶小项趋于零,可得:
    A x k + 1 ≈ λ 1 u 1 , x k + 1 ≈ u 1 Ax_{k+1} \approx λ_1u_1, \quad x_{k+1} \approx u_1 Axk+1λ1u1,xk+1u1


具体实现步骤

  1. 随机初始化非零向量 v 0 \boldsymbol{v}_0 v0
  2. 迭代计算:
    v k + 1 = A v k ∥ A v k ∥ \boldsymbol{v}_{k+1} = \frac{A\boldsymbol{v}_k}{\|A\boldsymbol{v}_k\|} vk+1=AvkAvk
  3. 估计特征值:
    λ ≈ v k ⊤ A v k \lambda \approx \boldsymbol{v}_k^\top A \boldsymbol{v}_k λvkAvk

编程实现

具体实现时,并没有λ1和u1的值,因此,迭代计算 x k + 1 = A x k x_{k+1}=Ax_k xk+1=Axk后,规范化 x k + 1 x_{k+1} xk+1即可。注意:最大特征值是指模最大的那个特征值

% 幂法求最大特征值
clc;
clear;
close all;
% 第一种写法
A=[4 2 -2; -2 8 1 ; 2 4 -4];
x = ones(size(A));
for i=1:40x=A*x;[mx,id] = max(abs(x));x=x/x(id);
end
e = A*x./x;
[mx,id] = max(abs(e));
e = e(id)eig(A)% 第二种写法
v0 = [1;1;1];
u0 = [1;1;1];
% A = [2,-1,0;-1,2,-1;0,-1,2];
v = A * u0;
u = v / norm(v, inf);
i = 0;
while norm(u - u0, inf) >= 1e-6u0 = u;v = A * u0;u = v / norm(v, inf);i = i+1;
end
norm(v, inf)
i
u

补充说明

  • 最大特征值: 幂法求得的是模最大的特征值 λ 1 λ_1 λ1

2. 逆幂迭代法(Inverse Iteration)

目标:求解靠近 μ \mu μ最小模特征值

给定矩阵 ( A ),假设其有 ( n ) 个实特征值:

∣ λ 1 ∣ > ∣ λ 2 ∣ > ⋯ > ∣ λ n ∣ |\lambda_1| > |\lambda_2| > \cdots > |\lambda_n| λ1>λ2>>λn

其对应的特征向量为( u 1 , u 2 u_1, u_2 u1,u2, … , u n \ldots, u_n ,un)。( λ n \lambda_n λn ) 是最小特征值。首先注意到如果 ( A u = λ u Au= \lambda u Au=λu ),则:

A − 1 A u = A − 1 λ u ⟹ u = A − 1 λ u A^{-1}Au = A^{-1}\lambda u \implies u = A^{-1}\lambda u A1Au=A1λuu=A1λu

因此有:

A − 1 u = 1 λ u A^{-1}u = \frac{1}{\lambda}u A1u=λ1u

可以看到,当 λ n \lambda_n λn为矩阵 A 的最小特征值时,( 1 λ n \frac{1}{\lambda_n} λn1 ) 将是 A − 1 A^{-1} A1的最大特征值。此时运用幂法求解 A − 1 A^{-1} A1 的最大特征值,取倒数,即为 A 的最小特征值。反幂算法中需要注意的是,当最小特征值为 0 时,其倒数是没有定义的,此时反幂法求解的是第二小的特征值,且需要采用移位反幂法。

function e = MinEig(A)invA = inv(A);x = ones(size(A));for i=1:40x=invA*x; [mx,id] = max(abs(x));x=x/x(id);ende = invA*x./x; [mx,id] = max(abs(e));e = 1/e(id);
end

移位反幂法

步骤

  1. ( A − μ I ) (A - \mu I) (AμI) 进行 LU 分解。
  2. 随机初始化向量 v 0 \boldsymbol{v}_0 v0
  3. 迭代求解:
    ( A − μ I ) v k + 1 = v k ⇒ v k + 1 = v k + 1 ∥ v k + 1 ∥ (A - \mu I)\boldsymbol{v}_{k+1} = \boldsymbol{v}_k \quad \Rightarrow \quad \boldsymbol{v}_{k+1} = \frac{\boldsymbol{v}_{k+1}}{\|\boldsymbol{v}_{k+1}\|} (AμI)vk+1=vkvk+1=vk+1vk+1
A = [3,0,-10;-1,3,4;0,1,-2];
I = eye(3,3);
p = 4.3;
u0 = [1;1;1];
v = inv(A - p * I) * u0;
u = v / norm(v, inf);
i = 0;
while norm(u - u0, inf) > 1e-5u0 = u;v = inv(A - p * I) * u0;u = v / norm(v, inf);i ++;
end;
i
u
x = p + 1 / norm(v, inf)

综述所述,可以总结反幂法求解特征向量的特点如下:

位移技术: 对每个已求得的特征值 λ i \lambda_i λi,构造矩阵 A 0 − λ i I A_0-\lambda_iI A0λiI,使其接近奇异;

加速收敛: 反幂法迭代公式为 x k + 1 = ( A − σ I ) − 1 x k x_{k+1}=(A-\sigma I)^{-1}x_k xk+1=(AσI)1xk,其中 σ \sigma σ接近特征值。此时 ( A − σ I ) − 1 (A-\sigma I)^{-1} (AσI)1的模最大特征值对应的特征向量即为A的 σ \sigma σ附近特征值的特征向量。

高精度优势: λ i \lambda_i λi精度较高时,反幂法可以在少量迭代内快速收敛到对应特征向量。


3. QR 算法(QR Algorithm)——稠密矩阵

目标:求解所有特征值(稠密矩阵)。
步骤

  1. A A A 转化为上 Hessenberg 矩阵。
  2. 迭代 QR 分解:
    A k = Q k R k , A k + 1 = R k Q k A_k = Q_k R_k, \quad A_{k+1} = R_k Q_k Ak=QkRk,Ak+1=RkQk
  3. A k A_k Ak 收敛为上三角矩阵时,对角线元素即为特征值。

理论推导

幂法与反幂法用于求解矩阵的最大特征值与最小特征值。若想求解矩阵的所有特征值,可以使用QR分解法。假设矩阵 A 是 n × n n \times n n×n 的方阵,且其 n 个特征值均为互不相同的实数。QR分解法的理论保证如下:

若对矩阵 A 进行相似变换 B = C − 1 A C B = C^{-1}AC B=C1AC ,则变换后的矩阵 B 的特征值与 A 一致。这是因为:
A u = λ u Au = \lambda u Au=λu ,令 v = C − 1 u v = C^{-1}u v=C1u,则有
A C v = A u = λ C v ACv = Au = \lambda Cv ACv=Au=λCv
进一步可得
C − 1 A C v = λ v C^{-1}ACv = \lambda v C1ACv=λv
因此, λ \lambda λ 也是 C − 1 A C C^{-1}AC C1AC 的特征值。

据此,可以通过以下步骤实现特征值和特征向量的求解:

  1. 初始化

    • 令 ( A_1 = A ),并对 ( A_1 ) 进行QR分解:
      A 1 = Q 1 R 1 A_1 = Q_1R_1 A1=Q1R1
      其中,( Q_1 ) 是正交矩阵(满足 ( Q_1Q_1^T = I )),( R_1 ) 是上三角矩阵。
  2. 迭代生成新矩阵

    • 计算 ( A_2 = R_1Q_1 ),即:
      A 2 = Q 1 − 1 A 1 Q 1 A_2 = Q_1^{-1}A_1Q_1 A2=Q11A1Q1
      此时 ( A_2 ) 的特征值与 ( A ) 一致。继续对 ( A_2 ) 进行QR分解:
      A 2 = Q 2 R 2 A_2 = Q_2R_2 A2=Q2R2
  3. 重复迭代

    • 计算 ( A_3 = R_2Q_2 ),即:
      A 3 = Q 2 − 1 A 2 Q 2 = Q 2 − 1 Q 1 − 1 A 1 Q 1 Q 2 A_3 = Q_2^{-1}A_2Q_2 = Q_2^{-1}Q_1^{-1}A_1Q_1Q_2 A3=Q21A2Q2=Q21Q11A1Q1Q2
  4. 终止条件

    • 重复上述步骤,直至 ( A_n ) 收敛为一个上三角矩阵。此时,矩阵对角线上的元素即为 ( A ) 的所有特征值。

:QR分解通过不断迭代将原矩阵相似变换为上三角矩阵,从而直接读取对角线元素作为特征值。此方法适用于实对称矩阵或具有实特征值的方阵。

编程实现

A=[ 6 -7 2 ; 4 -5 2; 1 -1 1]
A0=A;
for i=1:40[Q R]=qr(A);A=R*Q;
end
A
ev=diag(A)
eig(A0)

特点

  • 复杂度 O ( n 3 ) O(n^3) O(n3),LAPACK 的核心算法。
  • 结合位移(如 Wilkinson 位移)优化收敛。

‌特征值修正‌
QR方法得到的特征值可能存在微小误差,反幂法可进一步修正

A=[ 6 -7 2 ; 4 -5 2; 1 -1 1]
A0=A;
for i=1:40[Q R]=qr(A);A=R*Q;
end
A
ev=diag(A)
Q
eig(A0)% 使用反幂法求特征向量,并对特征值进行修正
a = ev;
n = size(a,1);
x = zeros(n);
for i = 1:nx0 = ones(n,1);[b,x0] = MinEig(A0-a(i,1)*eye(n));x(:,i) = x0;a(i,:) = a(i,:) + b;
enda
x

4. 雅可比方法(Jacobi Method)——对称矩阵

目标:求解对称矩阵的所有特征值和特征向量。

Jacobi方法的基本思想是通过一次正交变换,将A中的一对非零的非对角元素化成零并且使得非对角元素的平方和减小。反复进行上述过程,使变换后的矩阵的非对角元素的平方和趋于零,从而使该矩阵近似为对角矩阵,得到全部特征值和特征向量。

步骤

  1. 通过 Givens 旋转矩阵 G k G_k Gk 逐步对角化:
    A k + 1 = G k ⊤ A k G k A_{k+1} = G_k^\top A_k G_k Ak+1=GkAkGk
  2. 重复直到非对角元素接近零。

特点

  • 稳定但收敛慢,特征向量通过旋转矩阵累积。

编程实现

function [D,V,iter]=Jacobi_classical(A,maxIter,tol)
n = size(A, 1); % 矩阵的大小
V = eye(n); % 初始化特征向量矩阵为单位矩阵
iter = 0; % 初始化迭代次数
% 设置最大迭代次数和误差精度
if nargin < 3 || isempty(tol)tol = 1e-9; % 默认误差精度
end
if nargin < 2 || isempty(maxIter)maxIter = 1000; % 默认最大迭代次数
end
while(iter < maxIter)iter=iter+1;D=A;n=size(D,1);p=1;q=2;for i=1:nfor j=i+1:nif(abs(D(i,j))>abs(D(p,q)))%找到对称矩阵的上三角矩阵中最大的元素的下标p=i;q=j;endendendif(abs(D(p,q))<tol)break;endif(A(p,q)~=0)d=(A(q,q)-A(p,p))/(2*A(p,q));if(d>0)t=1/(d+sqrt(d^2+1));elset=-1/(-d+sqrt(d^2+1));endc=1/sqrt(t^2+1);s=c*t;elsec=1;s=0;endR=[c s;-s c];A([p,q],:)=R'*A([p,q],:);A(:,[p,q])=A(:,[p,q])*R;V(:, [p, q]) = V(:,[p,q])*R;
end
D = diag(diag(D));  % 提取特征值
end

结果测试:

clc;
clear;
close all;A=[ 6 -7 2 ; 4 -5 2; 1 -1 1]
[D, V, iter] = Jacobi_classical(A, 2000)
eig(A)

在这里插入图片描述


5. Lanczos 算法(稀疏矩阵)

目标:求解稀疏矩阵的部分极端特征值
步骤

  1. 生成 Krylov 子空间的正交基底。
  2. 投影到三对角矩阵 T k T_k Tk
    T k = V k ⊤ A V k T_k = V_k^\top A V_k Tk=VkAVk
  3. T k T_k Tk 应用 QR 算法求特征值。
    特点
  • 仅需矩阵-向量乘法,适合大规模稀疏矩阵。

6. 分治法

目标:高效求解对称三对角矩阵的所有特征值。
步骤

  1. 将矩阵分解为子矩阵。
  2. 递归求解子矩阵特征值。
  3. 合并子问题解并修正。

特点

  • 复杂度 O ( n 2 ) O(n^2) O(n2),适合大规模三对角矩阵。

7. 方法选择指南

场景推荐方法
中小规模稠密矩阵QR 算法
对称矩阵Jacobi 或 QR 算法
稀疏矩阵的极端特征值Lanczos/Arnoldi 迭代
最小/靠近 μ \mu μ 的特征值逆幂迭代法 + 位移
工程问题中的部分特征值子空间迭代法

8. 关键公式与说明

特征方程
矩阵 A A A 的特征值满足:
det ⁡ ( A − λ I ) = 0 \det(A - \lambda I) = 0 det(AλI)=0

  • 2x2 矩阵
    λ 2 − tr ( A ) λ + det ⁡ ( A ) = 0 \lambda^2 - \text{tr}(A)\lambda + \det(A) = 0 λ2tr(A)λ+det(A)=0
  • n 阶矩阵
    P ( λ ) = ( − 1 ) n λ n + ⋯ + det ⁡ ( A ) P(\lambda) = (-1)^n \lambda^n + \dots + \det(A) P(λ)=(1)nλn++det(A)

提示

  • 高阶矩阵避免解析法,优先使用数值库(如 LAPACK、ARPACK)。
  • 对称矩阵的特征向量可正交化,提升计算稳定性。

参考文献

[1] *数值计算day5-特征值与特征向量
[2] 数值计算方法 Chapter7. 计算矩阵的特征值和特征向量
[3] 数值线性代数:Arnoldi求解特征值/特征向量
[4] 使用Matlab实现:幂法、反幂法(原点位移)
[5] MATLAB求解矩阵特征值的六种方法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/31889.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux实践系列】:用c语言实现一个shell外壳程序

&#x1f525;本文专栏&#xff1a;Linux Linux实践项目 &#x1f338;博主主页&#xff1a;努力努力再努力wz 那么今天我们就要进入Linux的实践环节&#xff0c;那么我们之前学习了进程控制相关的几个知识点&#xff0c;比如进程的终止以及进程的等待和进程的替换&#xff0c;…

使用STM32CubeMX配置定时器中断实现LED每秒闪烁一次(STM32G070CBT6)

说明&#xff1a; 本案例采用的定时器3&#xff08;TIM3&#xff09;实现&#xff0c;使用其他定时器是一样配置。 如何新建一个工程以及如何配置LED的端口&#xff0c;请查看前面文章&#xff1a;使用STM32CubeMX实现LED灯每秒闪烁一次&#xff08;STM32G070CBT6单片机&…

2025年Draw.io最新版本下载安装教程,附详细图文

2025年Draw.io最新版本下载安装教程&#xff0c;附详细图文 大家好&#xff0c;今天给大家介绍一款非常实用的流程图绘制软件——Draw.io。不管你是平时需要设计流程图、绘制思维导图&#xff0c;还是制作架构图&#xff0c;甚至是简单的草图&#xff0c;它都能帮你轻松搞定。…

GStreamer —— 2.15、Windows下Qt加载GStreamer库后运行 - “播放教程 1:Playbin 使用“(附:完整源码)

运行效果 介绍 我们已经使用了这个元素&#xff0c;它能够构建一个完整的播放管道&#xff0c;而无需做太多工作。 本教程介绍如何进一步自定义&#xff0c;以防其默认值不适合我们的特定需求。将学习&#xff1a; • 如何确定文件包含多少个流&#xff0c;以及如何切换 其中。…

Python----数据可视化(Seaborn一:介绍,应用)

一、Seaborn的介绍 Seaborn 是一个基于 matplotlib 的 Python 库&#xff0c;对其进行了高级 API 的封装&#xff0c;使得作图更为方便和吸引人。尽管在大多数情况下&#xff0c;使用 Seaborn 就能够创建出美观的图表&#xff0c;但 matplotlib 提供了更高的灵活性和定制化的能…

小程序SSL证书过期怎么办?

SSL证书就像小程序的“安全锁”&#xff0c;一旦过期&#xff0c;用户访问时会被提示“不安全”&#xff0c;轻则流失客户&#xff0c;重则数据泄露&#xff01;作为企业负责人&#xff0c;如何快速解决证书过期问题&#xff1f;又该如何避免再次踩坑&#xff1f;这篇指南给你答…

Linux上位机开发实战(x86和arm自由切换)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 前面我们说过&#xff0c;qt本身支持windows系统&#xff0c;也支持linux系统。不仅如此&#xff0c;qt除了支持传统的x86 cpu之外&#xff0c;还支…

Mysql的卸载安装配置以及简单使用

MySQL其它问题已经更新在&#xff1a;MySQL完善配置---可视化-CSDN博客 一、卸载 ①控制面板卸载 ②C盘隐藏项目>ProgramData>mysql相关文件夹&#xff0c;还有Program file下的MySQL文件夹 ③开始菜单栏搜索>服务&#xff0c;找到MySQL相关服务删除&#xff0c;如果再…

RabbitMQ之旅(1)

相信自己,终会成功 目录 主流MQ产品 1.kafaka 2.RocketMQ 3.RabbitMQ 在xshell上安装RabbitMQ RabbitMQ七种工作模式 1.简单模式 ​编辑 2.工作队列模式 3.发布/订阅模式 4.路由模式 5.通配符模式 6.RPC模式 AMQP.BasicProperties 设置消息属性的类 7.发布确认模…

基于Matlab的人脸识别的二维PCA

一、基本原理 传统 PCA 在处理图像数据时&#xff0c;需将二维图像矩阵拉伸为一维向量&#xff0c;这使得数据维度剧增&#xff0c;引发高计算成本与存储压力。与之不同&#xff0c;2DPCA 直接基于二维图像矩阵展开运算。 它着眼于图像矩阵的列向量&#xff0c;构建协方差矩阵…

el-pagination的使用说明

<el-paginationv-model:current-page"pageNo" //当前第几页v-model:page-size"pageSize" //每页显示多少条数据:page-sizes"[10, 20, 30]" //控制每页显示的条数:small"true" //控制分页器大小:disabled&quo…

Redis Redis介绍、安装 - Redis客户端

目录 redis是什么&#xff0c;他的应用场景是什么&#xff1f; Redis的一些主要特点和应用场景&#xff1a; redis的官方网站&#xff1a;Redis redis是键值型数据库&#xff1a;&#xff08;也就是key-value模式&#xff09;&#xff08;跟python的字典很像&#xff09; …

LWIP网络模型及接口简介(DAY 01)

目录 1.网络协议分层模型 2. LWIP三种编程接口 1.网络协议分层模型 其中各层级的封装与拆封过程 2. LWIP三种编程接口 LwIP 提供了三种编程接口&#xff0c;分别为 RAW/Callback API、NETCONN API、SOCKET API。它们的易用性从左到右依次提高&#xff0c;而执行效率从左到右依…

【Python 数据结构 14.邻接表】

希望你的眼睛可以一直笑&#xff0c;想要的都得到 —— 25.3.11 一、邻接表的概念 1.邻接表的定义 邻接表是一种表示图的数据结构。邻接表的主要概念是&#xff1a;对于图中的每个顶点&#xff0c;维护一个由与其相邻的顶点组成的列表。这个列表可以用数组、链表或其他数据结构…

01 音视频知识学习(视频)

图像基础概念 ◼像素&#xff1a;像素是一个图片的基本单位&#xff0c;pix是英语单词picture的简写&#xff0c;加上英 语单词“元素element”&#xff0c;就得到了“pixel”&#xff0c;简称px&#xff0c;所以“像素”有“图像元素” 之意。 ◼ 分辨率&#xff1a;是指图像…

git文件过大导致gitea仓库镜像推送失败问题解决(push failed: context deadline exceeded)

问题描述&#xff1a; 今天发现gitea仓库推送到某个镜像仓库的操作几个月前已经报错终止推送了&#xff0c;报错如下&#xff1a; 首先翻译报错提示可知是因为git仓库大小超过1G限制。检查本地.git文件&#xff0c;发现.git文件大小已达到1.13G。确定是.git文件过大导致&…

clickhouse集群部署保姆级教程

ClickHouse安装 版本要求 23.8及之后的版本 硬件要求 三台机器 建议配置 磁盘 ssd 500G内存 32gcpu 16c 最低配置 磁盘 机械硬盘 50G内存 4gcpu 4c 容量规划 一亿条数据大约使用1TB磁盘容量 参考官方容量推荐 安装包准备 zookeeper安装 zookeeper需要java启动&…

FANformer:融合傅里叶分析网络的大语言模型基础架构

近期大语言模型(LLM)的基准测试结果引发了对现有架构扩展性的思考。尽管OpenAI推出的GPT-4.5被定位为其最强大的聊天模型&#xff0c;但在多项关键基准测试上的表现却不及某些规模较小的模型。DeepSeek-V3在AIME 2024评测中达到了39.2%的Pass1准确率&#xff0c;在SWE-bench Ve…

Electron使用WebAssembly实现CRC-32 常用标准校验

Electron使用WebAssembly实现CRC-32 常用标准校验 将C/C语言代码&#xff0c;经由WebAssembly编译为库函数&#xff0c;可以在JS语言环境进行调用。这里介绍在Electron工具环境使用WebAssembly调用CRC-32 常用标准格式校验的方式。 CRC-32 常用标准校验函数WebAssembly源文件…

MySQL数据库的相关语句

数据库的操作&#xff08;CURD&#xff09; 创建数据库&#xff08;重点&#xff09; 查看数据库&#xff08;重点&#xff09; show databases; ‐‐ 查看所有的数据库use 数据库名称;(*****) ‐‐ 使用数据库show create database 数据库名称; ‐‐ 查询数据库的创建的信息s…