主流大语言模型中Token的生成过程本质是串行的

主流大语言模型中Token的生成过程本质是串行的

flyfish

1. 串行生成

  • 自回归模型的核心逻辑
    大模型(如GPT-2)采用自回归架构,每个Token的生成必须基于已生成的完整历史序列。例如,生成“今天天气很好”时:

    输入:<start>
    输出1"今" → 输入更新:<start>今
    输出2"天" → 输入更新:<start>今天
    输出3"天" → 输入更新:<start>今天天
    ...(重复或乱码可能因模型困惑导致)
    

    每个Token的生成必须依赖前一步的结果,形成严格的链式依赖。

  • 计算与生成的分离
    虽然模型内部的矩阵运算(如注意力计算)通过GPU并行加速,但生成顺序必须严格串行。例如:

    • 第1步:计算第一个Token的概率分布(基于空输入)。
    • 第2步:将第一个Token加入输入,计算第二个Token的概率分布。
    • 依此类推,无法跳过或提前生成后续Token。

例如:

# 假设模型需生成 "ABC"
步骤1:生成A(依赖空输入)
步骤2:生成B(依赖A)
步骤3:生成C(依赖A+B)

即使步骤1和步骤2的计算在硬件层面并行,生成顺序仍必须是A→B→C。

2. 优化方法的局限性

Beam Search等算法通过维护多个候选序列提升效率,但本质仍是串行生成:

# Beam Search示例(Beam Size=2)
步骤1:生成2个候选("今", "天")
步骤2:基于每个候选生成下一个Token(如"今天""气""天天""气")
步骤3:依此类推,每次扩展候选序列的长度

每个候选序列的Token仍需按顺序生成,无法并行生成整个序列。

import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer# 加载 GPT-2 模型和分词器
model_path = r"gpt2"tokenizer = GPT2Tokenizer.from_pretrained(model_path)
model = GPT2LMHeadModel.from_pretrained(model_path)input_text = "Once upon a time"
input_ids = tokenizer.encode(input_text, return_tensors='pt')# 使用 top - k 采样生成文本
output = model.generate(input_ids,max_length=20,top_k=50,temperature=0.7
)generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print("生成的文本:", generated_text)

生成的文本: Once upon a time, the world was a place of great beauty and great danger. The world was

import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer# 加载 GPT-2 模型和分词器
model_path = r"gpt2"tokenizer = GPT2Tokenizer.from_pretrained(model_path)
model = GPT2LMHeadModel.from_pretrained(model_path)# 输入文本
input_text = "Once upon a time"
# 对输入文本进行分词
input_ids = tokenizer.encode(input_text, return_tensors='pt')# 初始化生成的序列
generated_sequence = input_ids# 定义最大生成长度
max_length = 20print("顺序生成的 token:")
for step in range(max_length):# 使用模型进行预测with torch.no_grad():outputs = model(generated_sequence)logits = outputs.logits[:, -1, :]  # 获取最后一个 token 的预测结果# 选择概率最大的 tokennext_token_id = torch.argmax(logits, dim=-1).unsqueeze(0)# 将生成的 token 添加到序列中generated_sequence = torch.cat([generated_sequence, next_token_id], dim=-1)# 解码并打印生成的 token 及其位置next_token = tokenizer.decode(next_token_id[0].item())print(f"步骤 {step + 1}: 生成 token '{next_token}',当前序列长度: {generated_sequence.shape[1]}")# 解码并打印完整的生成序列
generated_text = tokenizer.decode(generated_sequence[0], skip_special_tokens=True)
print("\n完整生成的文本:", generated_text)
顺序生成的 token:
步骤 1: 生成 token ',',当前序列长度: 5
步骤 2: 生成 token ' the',当前序列长度: 6
步骤 3: 生成 token ' world',当前序列长度: 7
步骤 4: 生成 token ' was',当前序列长度: 8
步骤 5: 生成 token ' a',当前序列长度: 9
步骤 6: 生成 token ' place',当前序列长度: 10
步骤 7: 生成 token ' of',当前序列长度: 11
步骤 8: 生成 token ' great',当前序列长度: 12
步骤 9: 生成 token ' beauty',当前序列长度: 13
步骤 10: 生成 token ' and',当前序列长度: 14
步骤 11: 生成 token ' great',当前序列长度: 15
步骤 12: 生成 token ' danger',当前序列长度: 16
步骤 13: 生成 token '.',当前序列长度: 17
步骤 14: 生成 token ' The',当前序列长度: 18
步骤 15: 生成 token ' world',当前序列长度: 19
步骤 16: 生成 token ' was',当前序列长度: 20
步骤 17: 生成 token ' a',当前序列长度: 21
步骤 18: 生成 token ' place',当前序列长度: 22
步骤 19: 生成 token ' of',当前序列长度: 23

自回归架构是许多大语言模型顺序生成Token的根本原因,并且其链式依赖特性确实有助于确保生成过程的逻辑连贯性。

自回归架构与Token生成

  1. 自回归机制

    • 在自回归模型中,比如GPT系列模型,生成下一个Token的过程依赖于前面已经生成的所有Token。具体来说,生成第 t t t个Token时,模型会基于前 t − 1 t-1 t1个Token来计算概率分布,然后从中采样或选择最有可能的下一个Token。
    • 这种链式依赖关系(即每个Token的生成依赖于之前的全部或部分Token)保证了文本生成的逻辑一致性和连贯性。
  2. 串行生成 vs 并行生成

    • 串行生成:传统的大语言模型如GPT系列,在推理阶段通常是逐个Token串行生成的。这是因为每个新Token的生成都需要利用到之前所有已生成的Token作为上下文输入,这种依赖关系限制了并行处理的可能性。
    • 尝试并行化:尽管存在一些研究和方法试图提高生成效率,例如通过投机解码(Speculative Decoding)或者使用多个模型同时预测不同位置的Token,但这些方法并没有完全改变基本的自回归生成机制。大多数情况下,核心的Token生成步骤仍然是串行进行的,因为当前Token的生成必须等待前面的Token确定下来才能开始。

3. 数学本质的"自相关性"

自回归(Autoregressive)模型中的"自",自回归的核心在于当前输出仅依赖于自身历史输出。用数学公式表示为:
x t = ϕ 1 x t − 1 + ϕ 2 x t − 2 + ⋯ + ϕ p x t − p + ϵ t x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + \epsilon_t xt=ϕ1xt1+ϕ2xt2++ϕpxtp+ϵt

  • 自相关性:模型通过自身序列的滞后项( x t − 1 , x t − 2 x_{t-1}, x_{t-2} xt1,xt2等)预测当前值
  • 内生性:所有变量均来自同一序列,区别于普通回归模型中的外生变量

例如,股票价格预测模型中, x t x_t xt(今日股价)仅依赖于过去5天的股价( x t − 1 x_{t-1} xt1 x t − 5 x_{t-5} xt5),而非外部因素如新闻、财报等。

4. 生成过程的"自我迭代"

在自然语言处理中,这种"自"特性体现为:

  1. 链式生成:每个Token的生成必须基于已生成的Token序列
  2. 因果掩码:Transformer架构中,每个位置i的注意力被限制在1到i-1的位置
  3. 动态更新:每生成一个Token,模型的内部状态(隐藏层激活值)会被更新

以GPT-2生成句子为例:

输入:"今天天气"
生成过程:
1. 预测第一个Token:"很"(基于"今天天气")
2. 预测第二个Token:"好"(基于"今天天气很")
3. 预测第三个Token:"啊"(基于"今天天气很好")

5. 与其他模型的对比

模型类型是否"自"依赖典型应用场景
自回归模型仅依赖自身历史文本生成、时间序列预测
非自回归模型不依赖自身历史图像超分辨率、语音识别
混合模型部分依赖自身历史对话系统(结合外部知识)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/31917.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NAFNet:Simple Baselines for Image Restoration

Abstract 近年来&#xff0c;图像复原技术取得了长足的进步&#xff0c;但现有的图像复原方法&#xff08;SOTA&#xff09;系统复杂度也在不断增加&#xff0c;不利于对各种方法的分析和比较。在本文中&#xff0c;我们提出了一种简单的基线&#xff0c;它超越了SOTA方法&…

python语言总结(持续更新)

本文主要是总结各函数&#xff0c;简单的函数不会给予示例&#xff0c;如果在平日遇到一些新类型将会添加 基础知识 输入与输出 print([要输出的内容])输出函数 input([提示内容]如果输入提示内容会在交互界面显示&#xff0c;用以提示用户)输入函数 注释 # 单行注释符&…

基于springboot和spring-boot-starter-data-jpa快速操作mysql数据库

1、创建springboot项目 2、pom.xml文件 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http:…

【Spring】基础/体系结构/核心模块

概述&#xff1a; Spring 是另一个主流的 Java Web 开发框架&#xff0c;该框架是一个轻量级的应用框架。 Spring 是分层的 Java SE/EE full-stack 轻量级开源框架&#xff0c;以 IoC&#xff08;Inverse of Control&#xff0c;控制反转&#xff09;和 AOP&#xff08;Aspect…

VMware安装Windows server 2016

1、新建虚拟机&#xff0c;选择自定义模式 2、选择兼容性 4、命名虚拟机 5、固件类型 EFI 虚拟磁盘类型&#xff0c;不同电脑推荐的类型不同&#xff0c;用默认的就行 删除声卡和打印机 检查网络配置 选择本地的Windows server 2016的系统镜像&#xff0c;系统镜像可以去Window…

【MySQL】增删改查进阶

目录 一、数据库约束 约束类型 NULL约束&#xff1a;非空约束 UNIQUE&#xff1a;唯一约束 DEFAULT&#xff1a;默认值约束 PRIMARY KEY&#xff1a;主键约束 FOREIGN KEY&#xff1a;外键约束 二、表的设计 三、新增 四、查询 聚合查询 聚合函数 GROUP BY子句 HA…

使用Process Explorer、Dependency Walker和PE信息查看工具快速排查dll动态库因库与库版本不一致导致的加载失败问题

目录 1、问题说明 2、使用Process Explorer查看目标dll动态库有没有动态加载起来 3、使用Dependency Walker查看xxpadll.dll库的库依赖关系&#xff0c;找到xxpadll.dll加载失败的原因 4、使用PE信息查看工具查看目标dll库的时间戳 5、关于xxsipstack2.dll中调用xxdatanet…

NCCL如何打印XML拓扑文件,操作说明和源码展示

NCCL源码解读的视频在这&#xff1a;NCCL集合通信源码解读、案例、任务调度、拓扑_哔哩哔哩_bilibili 一、环境变量设置 1.1 命令行环境变量设置 为了打印XML拓扑文件&#xff0c;需要设置NCCL的环境变量NCCL_TOPO_DUMP_FILE。这个环境变量指定了XML拓扑文件的输出路径和文件…

时序数据库 TDengine 化工新签约:存储降本一半,查询提速十倍

化工行业在数字化转型过程中面临数据接入复杂、实时性要求高、系统集成难度大等诸多挑战。福州力川数码科技有限公司科技依托深厚的行业积累&#xff0c;精准聚焦行业痛点&#xff0c;并携手 TDengine 提供高效解决方案。通过应用 TDengine&#xff0c;力川科技助力化工企业实现…

Maven的学习以及安装配置 2024/3/1 idea

1. Maven的安装 1.1 首先查看编程工具合适的Maven版本 我使用的是2024/3/1 版本的idea&#xff0c;接下来我会用这个版本的idea进行演示。idea没有汉化的也可以参考我的步骤。 1、打开idea的设置&#xff0c;搜索Maven&#xff0c;进入Maven设置。 我们可以看到&#xff0c;…

kubernetes——part3-5 核心概念 Service

一、 service作用 使用kubernetes集群运行工作负载时&#xff0c;由于Pod经常处于用后即焚状态&#xff0c;Pod经常被重新生成&#xff0c;因此Pod对应的IP地址也会经常变化&#xff0c;导致无法直接访问Pod提供的服务&#xff0c;Kubernetes中使用了Service来解决这一问题&am…

【脚本】Linux一键扩大虚拟内存的大小

Linux增加虚拟内存其实很简单 就那几个命令&#xff0c;free、mkswap、swapon 但是方便起见我写成了脚本 使用方法 进入你的目录&#xff0c; nano ./install_swap.sh 下面的脚本全文复制&#xff0c;粘贴进去之后&#xff0c;按ctrlx后按y保存 然后运行以下命令 sudo bash …

学习 MySQL 需要知道的 28 个小技巧

前言 随着信息技术的不断发展以及互联网行业的高速增长&#xff0c;作为开源数据库的MySQL得到了广泛的应用和发展。目前MySQL已成为关系型数据库领域中非常重要的一员。 无论是运维、开发、测试&#xff0c;还是架构师&#xff0c;数据库技术都是一个 必备加薪神器&#xff…

【Hive】Hive安装

Hive 第一章 Hive的基础知识 第二章 Hive安装 第三章 DDL&#xff08;Data Definition Language&#xff09;数据定义 第四章 DML&#xff08;Data Manipulation Language&#xff09;数据操作 第五章 Hive查询 第六章 Hive的基础知识 第七章 Hive函数 第八章 分区表和分桶表 …

6.聊天室环境安装 - Ubuntu22.04 - elasticsearch(es)的安装和使用

目录 介绍安装安装kibana安装ES客户端使用 介绍 Elasticsearch&#xff0c; 简称 ES&#xff0c;它是个开源分布式搜索引擎&#xff0c;它的特点有&#xff1a;分布式&#xff0c;零配置&#xff0c;自动发现&#xff0c;索引自动分片&#xff0c;索引副本机制&#xff0c;res…

蓝桥每日打卡--合根植物

#蓝桥#JAVA#合根植物 题目描述 w星球的一个种植园&#xff0c;被分成mn个小格子&#xff08;东西方向m行&#xff0c;南北方向n列&#xff09;。每个格子里种了一株合根植物。 这种植物有个特点&#xff0c;它的根可能会沿着南北或东西方向伸展&#xff0c;从而与另一个格子…

线性代数之矩阵特征值与特征向量的数值求解方法

文章目录 前言1. 幂迭代法&#xff08;Power Iteration&#xff09;幂法与反幂法求解矩阵特征值幂法求最大特征值编程实现补充说明 2. 逆幂迭代法&#xff08;Inverse Iteration&#xff09;移位反幂法 3. QR 算法&#xff08;QR Algorithm&#xff09;——稠密矩阵理论推导编程…

【Linux实践系列】:用c语言实现一个shell外壳程序

&#x1f525;本文专栏&#xff1a;Linux Linux实践项目 &#x1f338;博主主页&#xff1a;努力努力再努力wz 那么今天我们就要进入Linux的实践环节&#xff0c;那么我们之前学习了进程控制相关的几个知识点&#xff0c;比如进程的终止以及进程的等待和进程的替换&#xff0c;…

使用STM32CubeMX配置定时器中断实现LED每秒闪烁一次(STM32G070CBT6)

说明&#xff1a; 本案例采用的定时器3&#xff08;TIM3&#xff09;实现&#xff0c;使用其他定时器是一样配置。 如何新建一个工程以及如何配置LED的端口&#xff0c;请查看前面文章&#xff1a;使用STM32CubeMX实现LED灯每秒闪烁一次&#xff08;STM32G070CBT6单片机&…

2025年Draw.io最新版本下载安装教程,附详细图文

2025年Draw.io最新版本下载安装教程&#xff0c;附详细图文 大家好&#xff0c;今天给大家介绍一款非常实用的流程图绘制软件——Draw.io。不管你是平时需要设计流程图、绘制思维导图&#xff0c;还是制作架构图&#xff0c;甚至是简单的草图&#xff0c;它都能帮你轻松搞定。…