swift微调多模态大语言模型

微调训练数据集指定方式的问题请教 · Issue #813 · modelscope/swift · GitHubQwen1.5微调训练脚本中,我用到了--dataset new_data.jsonl 这个选项, 可以训练成功,但我看文档有提到--custom_train_dataset_path这个选项,这两个有什么区别呢,是不是对自己生成的数据集用--dataset new_data.jsonl 这种方式是不对的,但是为什么又确实训练成功了呢(至少模型确实学习到了训练资料中的知识) # Experimental environment: A100 # 2*40GB GPU me...icon-default.png?t=N7T8https://github.com/modelscope/swift/issues/813swift/docs/source/Multi-Modal/qwen-vl最佳实践.md at main · modelscope/swift · GitHubms-swift: Use PEFT or Full-parameter to finetune 200+ LLMs or 15+ MLLMs - swift/docs/source/Multi-Modal/qwen-vl最佳实践.md at main · modelscope/swifticon-default.png?t=N7T8https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/qwen-vl%E6%9C%80%E4%BD%B3%E5%AE%9E%E8%B7%B5.mdhttps://github.com/modelscope/swift/blob/main/docs/source/LLM/%E5%91%BD%E4%BB%A4%E8%A1%8C%E5%8F%82%E6%95%B0.mdicon-default.png?t=N7T8https://github.com/modelscope/swift/blob/main/docs/source/LLM/%E5%91%BD%E4%BB%A4%E8%A1%8C%E5%8F%82%E6%95%B0.md1.数据格式

import json# 从.json文件中读取数据
with open(r'E:\comprehensive_library\e_commerce_lmm\data\openi-zh-prompt.json', 'r', encoding='utf-8') as f:data = json.load(f)# 数据格式转换
new_data = []
for d in data:new_conversations = dict()new_conversations["conversations"] = [{"from": "user","value": f'Picture 1: <img>{d["img"]}</img>\n{d["prompt"]}'},{"from": "assistant","value": d["label"]}]new_data.append(new_conversations)# 将转换后的数据写入新的.json文件中
with open('../data/openai-zh-swift-qwenvl-prompt.json', 'w', encoding='utf-8') as f:json.dump(new_data, f, ensure_ascii=False, indent=4)

和原版的qwen-vl的模板有一点区域别

[{"conversations": [{"from": "user", "value": "Picture 1:<img>img_path</img>\n11111"},{"from": "assistant", "value": "22222"}]},{"conversations": [{"from": "user", "value": "Picture 1:<img>img_path</img>\nPicture 2:<img>img_path2</img>\nPicture 3:<img>img_path3</img>\naaaaa"},{"from": "assistant", "value": "bbbbb"},{"from": "user", "value": "Picture 1:<img>img_path</img>\nccccc"},{"from": "assistant", "value": "ddddd"}]},{"conversations": [{"from": "user", "value": "AAAAA"},{"from": "assistant", "value": "BBBBB"},{"from": "user", "value": "CCCCC"},{"from": "assistant", "value": "DDDDD"}]}
]

2,微调

# Experimental environment: 3090
# 23GB GPU memory
NPROC_PER_NODE=4 CUDA_VISIBLE_DEVICES=0,1,2,3 swift sft \--model_type qwen-vl-chat  \--model_id_or_path /home/image_team/image_team_docker_home/lgd/e_commerce_lmm/weights/qwen-vl-caht/   \--dataset /home/image_team/image_team_docker_home/lgd/e_commerce_lmm/data/openai-zh-swift-qwenvl-prompt.json \--sft_type lora \--tuner_backend peft \--template_type AUTO \--dtype AUTO \--output_dir output \--train_dataset_sample -1 \--num_train_epochs 5 \--max_length 2048 \--check_dataset_strategy warning \--lora_rank 8 \--lora_alpha 32 \--lora_dropout_p 0.05 \--lora_target_modules c_attn attn.c_proj w1 w2 \--gradient_checkpointing true \--batch_size 1 \--weight_decay 0.1 \--learning_rate 1e-4 \--gradient_accumulation_steps 4 \--max_grad_norm 0.5 \--warmup_ratio 0.03 \--eval_steps 100 \--save_steps 1000 \--save_total_limit 10 \--logging_steps 10 \--use_flash_attn false \

参数含义:

  • --model_type: 表示你选择的模型类型, 默认是Nonemodel_type指定了对应模型默认的lora_target_modulestemplate_type等信息. 你可以通过只指定model_type进行微调. 对应的model_id_or_path会使用默认的设置, 从ModelScope进行下载, 并使用默认的缓存路径. model_type和model_id_or_path必须指定其中的一个. 可以选择的model_type可以查看支持的模型.
  • --model_id_or_path: 表示模型在ModelScope Hub中的model_id或者本地路径, 默认为None. 如果传入的model_id_or_path已经被注册, 则会根据model_id_or_path推断出model_type. 如果未被注册, 则需要同时指定model_type, e.g. --model_type <model_type> --model_id_or_path <model_id_or_path>.
  • --model_revision: 表示模型在ModelScope Hub中对应model_id的版本号, 默认为Nonemodel_revision指定为None, 则使用注册在MODEL_MAPPING中的revision. 否则强制使用命令行传入的model_revision.
  • --sft_type: 表示微调的方式, 默认是'lora'. 你可以选择的值包括: 'lora', 'full', 'longlora', 'qalora'. 如果你要使用qlora, 你需设置--sft_type lora --quantization_bit 4.
  • --freeze_parameters: 当sft_type指定为'full'时, 将模型最底部的参数进行freeze. 指定范围为0. ~ 1., 默认为0.. 该参数提供了lora与全参数微调的折中方案.
  • --additional_trainable_parameters: 作为freeze_parameters的补充, 只有在sft_type指定为'full'才允许被使用, 默认为[]. 例如你如果想训练50%的参数的情况下想额外训练embedding层, 你可以设置--freeze_parameters 0.5 --additional_trainable_parameters transformer.wte, 所有以transformer.wte开头的parameters都会被激活.
  • --tuner_backend: 表示lora, qlora的后端支持, 默认是'peft'. 你可以选择的值包括: 'swift', 'peft', 'unsloth'.
  • --template_type: 表示使用的对话模板的类型, 默认是'AUTO', 即根据model_type查找MODEL_MAPPING中的template. 可以选择的template_type可以查看TEMPLATE_MAPPING.keys().
  • --output_dir: 表示ckpt存储的目录, 默认是'output'. 我们会在该目录后拼接model_type和微调版本号. 方便用户对不同模型进行多次对比实验, 而不需要改变output_dir命令行参数. 如果不需要拼接这些内容, 你需要额外指定参数--add_output_dir_suffix false.
  • --add_output_dir_suffix: 默认为True, 表示会在output_dir的目录后拼接上model_type和微调版本号的后缀. 如果要避免此行为, 你可以设置为False.
  • --ddp_backend: 表示分布式的后端支持, 默认是None. 你可以选择的值包括: 'nccl', 'gloo', 'mpi', 'ccl'.
  • --seed: 全局的seed, 默认使用42. 用于复现训练效果.
  • --resume_from_checkpoint: 用于断点续训, 默认为None. 你可以将其设置为checkpoint的路径, 例如: 'output/qwen-7b-chat/vx-xxx/checkpoint-xxx', 来进行断点续训.
  • --dtype: 基模型载入时的torch_dtype, 默认为'AUTO', 即智能选择dtype: 如果机器不支持bf16, 则使用fp16, 如果MODEL_MAPPING中对应模型有指定torch_dtype, 则使用其对应dtype, 否则使用bf16. 你可以选择的值包括: 'bf16', 'fp16', 'fp32'.
  • --dataset: 用于选择训练的数据集, 默认为[]. 可以选择的数据集可以查看支持的数据集. 如果需要使用多个数据集进行训练, 你可以使用','或者' '进行分割, 例如: --dataset alpaca-en,alpaca-zh or --dataset alpaca-en alpaca-zh.
  • --dataset_seed: 用于指定数据集处理的seed, 默认为42. 以random_state形式存在, 不影响全局seed.
  • --dataset_test_ratio: 用于指定子数据集切分成训练集和验证集的比例, 默认为0.01. 如果子数据集已经进行了训练集和验证集的切分, 则此参数无效.
  • --train_dataset_sample: 对训练集的采样数, 默认是-1, 即使用完整的训练集进行训练.
  • --val_dataset_sample: 对验证集进行采样, 默认是None, 自动选取合适数量的数据集数量进行验证. 如果你指定为-1, 则使用完整的验证集进行验证.
  • --system: 对话模板中使用的system, 默认为None, 即使用模型默认的system. 如果指定为'', 则不使用system.
  • --max_length: token的最大长度, 默认为2048. 可以避免个别过长的数据样本造成OOM的问题. 当指定--truncation_strategy delete时, 如果某数据样本长度超过max_length, 我们会删除该数据样本. 如果指定--truncation_strategy truncation_left时, 我们会切除最前面的token: input_ids[-max_length:]. 如果设置为-1, 则无限制.
  • --truncation_strategy: 默认是'delete'表示把超过max_length的句子从数据集中删除. 'truncation_left'表示会将超过文本的左边给切除掉, 这可能会切到special token, 会影响性能, 并不推荐.
  • --check_dataset_strategy: 默认值为'none', 即不做检查. 如果你训练的模型是LLM, 则推荐使用'warning'作为数据检查的策略. 如果你的训练目标为句子分类等任务, 则建议设置为'none'.
  • --custom_train_dataset_path: 默认值为[]. 具体的含义参考自定义与拓展.
  • --custom_val_dataset_path: 默认值为[]. 具体的含义参考自定义与拓展.
  • --self_cognition_sample: 自我认知数据集的采样数. 默认为0. 你该值设置为>0时, 需要同时指定--model_name--model_author. 如果你想了解更多, 可以查看自我认知微调最佳实践.
  • --model_name: 默认为[None, None]. 如果开启了自我认知数据集的采样(即self_cognition_sample>0), 你需要传入两个值, 分别代表模型的中文名和英文名. 例如: --model_name 小黄 'Xiao Huang'.
  • --model_author: 默认为[None, None]. 如果开启了自我认知数据集的采样, 你需要传入两个值, 分别代表作者的中文名和英文名. 例如: --model_author 魔搭 ModelScope.
  • --quantization_bit: 用于指定是否进行量化和量化的bit数, 默认为0, 即不进行量化. 如果要使用4bit qlora, 你需要设置--sft_type lora --quantization_bit 4
  • --bnb_4bit_comp_dtype: 在进行4bit量化时, 我们需要在模型的forward和backward时, 将其进行反量化. 该参数用于指定反量化后的torch_dtype. 默认为'AUTO', 即与dtype保持一致. 可选择的值包括: 'fp16', 'bf16', 'fp32'. 当quantization_bit为0时, 该参数无效.
  • --bnb_4bit_quant_type: 4bit量化时的量化方式, 默认是'nf4'. 可选择的值包括: 'nf4', 'fp4'. 当quantization_bit为0时, 该参数无效.
  • --bnb_4bit_use_double_quant: 是否在4bit量化时开启double量化, 默认为True. 当quantization_bit为0时, 该参数无效.
  • --bnb_4bit_quant_storage: 默认值为None. 量化参数的存储类型. 若quantization_bit设置为0, 则该参数失效.
  • --lora_target_modules: 指定lora模块, 默认为['DEFAULT']. 如果lora_target_modules传入'DEFAULT' or 'AUTO', 则根据model_type查找MODEL_MAPPING中的lora_target_modules(默认指定为qkv). 如果传入'ALL', 则将所有的Linear层(不含head)指定为lora模块. 如果传入'EMBEDDING', 则Embedding层指定为lora模块. 如果内存允许, 建议设置成'ALL'. 当然, 你也可以设置['ALL', 'EMBEDDING'], 将所有的Linear和embedding层指定为lora模块. 该参数只有当sft_type指定为'lora'时才生效.
  • --lora_rank: 默认为8. 只有当sft_type指定为'lora'时才生效.
  • --lora_alpha: 默认为32. 只有当sft_type指定为'lora'时才生效.
  • --lora_dropout_p: 默认为0.05, 只有当sft_type指定为'lora'时才生效.
  • --lora_bias_trainable: 默认为'none', 可以选择的值: 'none', 'all'. 如果你要将bias全都设置为可训练, 你可以设置为'all'.
  • --lora_modules_to_save: 默认为[]. 如果你想要训练embedding, lm_head, 或者layer_norm, 你可以设置此参数, 例如: --lora_modules_to_save EMBEDDING LN lm_head. 如果传入'EMBEDDING', 则将Embedding层添加到lora_modules_to_save. 如果传入'LN', 则将RMSNormLayerNorm添加到lora_modules_to_save.
  • --lora_dtype: 默认为'AUTO', 指定lora模块的dtype类型. 如果是AUTO则跟随原始模块的dtype类型. 你可以选择的值: 'fp16', 'bf16', 'fp32', 'AUTO'.
  • --use_dora: 默认为False, 是否使用DoRA.
  • --use_rslora: 默认为False, 是否使用RS-LoRA.
  • --neftune_noise_alphaNEFTune添加的噪声系数, 可以提升模型在指令微调中的性能, 默认为None. 通常可以设置为5, 10, 15. 你可以查看相关论文.
  • --neftune_backendNEFTune的backend,默认使用transformers库, 当训练VL模型时可能遇到不适配的情况, 此时建议指定为swift.
  • --gradient_checkpointing: 是否开启gradient checkpointing, 默认为True. 该参数可以用于节约显存, 虽然这会略微降低训练速度. 该参数在max_length较大, batch_size较大时作用显著.
  • --deepspeed: 用于指定deepspeed的配置文件的路径或者直接传入json格式的配置信息, 默认为None, 即不开启deepspeed. deepspeed可以节约显存. 我们书写了默认的ZeRO-2配置文件, ZeRO-3配置文件. 你只需要指定'default-zero2', 就会使用默认zero2配置文件; 指定'default-zero3', 就会使用默认的zero3配置文件.
  • --batch_size: 训练时的batch_size, 默认为1. 增大batch_size可以增加GPU的利用率, 但不一定会增加训练速度, 因为在一个batch中, 需要对较短的句子按该batch中最长句子的长度进行padding, 从而引入无效的计算量.
  • --eval_batch_size: 评估时的batch_size, 默认为None, 即当predict_with_generate为True时, 设置为1, 为False时, 设置为batch_size.
  • --num_train_epochs: 训练的epoch数, 默认为1. 如果max_steps >= 0, 则覆盖num_train_epochs. 你可以设置为3, 5, 10等.
  • --max_steps: 训练的max_steps数, 默认为-1. 如果max_steps >= 0, 则覆盖num_train_epochs.
  • --optim: 默认为'adamw_torch'.
  • --learning_rate: 默认值为None, 即如果sft_type为lora, 则设置为1e-4, 如果sft_type为full, 则设置为1e-5.
  • --weight_decay: 默认值为0.1.
  • --gradient_accumulation_steps: 梯度累加, 默认值为None, 设置为math.ceil(16 / self.batch_size / world_size)total_batch_size = batch_size * gradient_accumulation_steps * world_size.
  • --max_grad_norm: 梯度裁剪, 默认值为0.5.
  • --predict_with_generate: 评估时是否使用生成式的方式, 默认为False. 如果设置为False, 则使用loss进行评估. 如果设置为True, 则使用ROUGE-L等指标进行评估. 使用生成式评估耗费的时间很长, 请谨慎选择.
  • --lr_scheduler_type: 默认值为'linear', 你可以选择: 'linear', 'cosine', 'constant'等.
  • --warmup_ratio: warmup占用总的训练steps的比例, 默认为0.05.
  • --eval_steps: 每训练多少steps进行评估, 默认为50.
  • --save_steps: 每训练多少个steps进行保存, 默认为None, 即设置为eval_steps.
  • --save_only_model: 是否只保存模型参数, 而不存储断点续训所需的中间状态, 默认为None, 即如果sft_type为'lora'并且不使用deepspeed(deepspeedNone), 设置为False, 否则设置为True(e.g. 使用了全参数微调或者使用了deepspeed).
  • --save_total_limit: 保存的checkpoint的数量, 默认为2, 即保存best和last的checkpoint. 如果设置为-1, 则保存所有的checkpoint.
  • --logging_steps: 每训练多少步打印训练信息(e.g. loss, learning_rate等), 默认为5.
  • --dataloader_num_workers: 默认值为1.
  • --push_to_hub: 是否将训练的checkpoint同步推送到ModelScope Hub中, 默认为False.
  • --hub_model_id: 推送到的ModelScope Hub的model_id, 默认为None, 即设置为f'{model_type}-{sft_type}'. 你可以将其设置为model_id, 也可以设置为repo_name. 我们会根据hub_token推断出user_name. 推送的远程仓库如果不存在, 则会创建一个新的仓库, 如果存在, 则复用之前的仓库. 该参数只有在push_to_hub设置为True时才生效.
  • --hub_token: 推送时需要的SDK token. 可以从魔搭社区获取, 默认为None, 即从环境变量MODELSCOPE_API_TOKEN中获取. 该参数只有在push_to_hub设置为True时才生效.
  • --hub_private_repo: 推送的ModelScope Hub中的模型仓库的权限是否设置为私有, 默认为False. 该参数只有在push_to_hub设置为True时才生效.
  • --push_hub_strategy: 推送策略, 默认为'push_best'. 可选择的值包括: 'end', 'push_best', 'push_last', 'checkpoint', 'all_checkpoints'. 'push_best'表示在每次保存权重时, 将最好的模型进行推送并覆盖之前的权重, 'push_last'表示在每次保存权重时, 将最后的权重进行推送并覆盖之前的权重, 'end'表示只在训练的最后推送最好的模型. 该参数只有在push_to_hub设置为True时才生效.
  • --test_oom_error: 用于检测训练是否会发生OOM, 默认为False. 如果设置为True, 则会将训练集按max_length倒序进行排列, 方便OOM的测试. 该参数一般用于测试, 请谨慎设置.
  • --disable_tqdm: 是否不启用tqdm, 这在nohup启动脚本时很有用. 默认为False, 即为启动tqdm.
  • --lazy_tokenize: 如果设置为False, 则在trainer.train()之前提前对所有文本进行预处理. 如果设置为True, 则延迟对文本进行编码, 减少预处理的等待并减少内存占用, 这在处理大数据集时很有用. 默认为None, 即我们会根据template的类型进行智能选择, LLM的模型通常设置为False, 多模态的模型通常设置为True(避免图片和音频加载导致过多的内存占用).
  • --preprocess_num_proc: 在对数据集预处理时(对文本进行tokenize), 使用多进程. 默认为1. 与lazy_tokenize命令行参数一样, 用于解决预处理速度慢的问题. 但该策略无法减少内存占用, 所以如果当数据集巨大时, 建议使用lazy_tokenize. 推荐设置的值: 4, 8. 请注意: 当使用qwen-audio时, 该参数会强制设置为1, 因为qwen-audio的预处理函数中使用了torch的多进程, 会造成不兼容问题.
  • --use_flash_attn: 是否使用flash attn, 默认为None. 安装flash_attn的步骤可以查看GitHub - Dao-AILab/flash-attention: Fast and memory-efficient exact attention. 支持flash_attn的模型可以查看LLM支持的模型.
  • --ignore_args_error: 是否忽略命令行传参错误抛出的Error, 默认为False. 如果需要拷贝代码到notebook中运行, 需要设置成True.
  • --check_model_is_latest: 检查模型是否是最新, 默认为True. 如果你需要断网进行训练, 请将该参数设置为False.
  • --logging_dir: 默认为None. 即设置为f'{self.output_dir}/runs', 表示tensorboard文件存储路径.
  • --report_to: 默认为['tensorboard'].
  • --acc_strategy: 默认为'token', 可选择的值包括: 'token', 'sentence'.
  • --save_on_each_node: 该参数在多机训练时生效, 默认为True.
  • --save_strategy: 保存checkpoint的策略, 默认为'steps', 可选择的值包括: 'steps', 'no'.
  • --save_safetensors: 默认为True.
  • --include_num_input_tokens_seen: 默认为False. 跟踪整个训练过程中观察到的输入tokens的数量.
  • --max_new_tokens: 默认为2048. 该参数只有在predict_with_generate设置为True的时候才生效.
  • --do_sample: 默认为True. 该参数只有在predict_with_generate设置为True的时候才生效.
  • --temperature: 默认为0.3. 该参数只有在predict_with_generate设置为True的时候才生效.
  • --top_k: 默认为20. 该参数只有在predict_with_generate设置为True的时候才生效.
  • --top_p: 默认为0.7. 该参数只有在predict_with_generate设置为True的时候才生效.
  • --repetition_penalty: 默认为1.. 该参数只有在predict_with_generate设置为True的时候才生效.
  • --num_beams: 默认为1. 该参数只有在predict_with_generate设置为True的时候才生效.
  • --gpu_memory_fraction: 默认为None. 该参数旨在指定显卡最大可用显存比例的情况下运行训练,用于极限测试.
  • --train_dataset_mix_ratio: 默认为0.. 该参数定义了如何进行数据集打混训练. 指定该参数时, 会混合训练集的train_dataset_mix_ratio倍数的train_dataset_mix_ds指定的通用知识数据集.
  • --train_dataset_mix_ds: 默认为['ms-bench']. 用于防止知识遗忘的通用知识数据集.
  • --use_loss_scale: 默认为False. 生效时会将Agent的部分字段(Action/Action Input部分)的loss权重加强以强化CoT, 对普通SFT场景没有任何效果.

3.推理

CUDA_VISIBLE_DEVICES=0 swift infer \--ckpt_dir /home/image_team/image_team_docker_home/lgd/e_commerce_lmm/results/qwenvl_swift_xray/qwen-vl-chat/v1-20240505-042908/checkpoint-990/ \--load_dataset_config true

合并lora推理

CUDA_VISIBLE_DEVICES=0 swift export \--ckpt_dir /home/image_team/image_team_docker_home/lgd/e_commerce_lmm/results/qwenvl_swift_xray/qwen-vl-chat/v1-20240505-042908/checkpoint-990/ \--merge_lora trueCUDA_VISIBLE_DEVICES=0 swift infer \--ckpt_dir /home/image_team/image_team_docker_home/lgd/e_commerce_lmm/results/qwenvl_swift_xray/qwen-vl-chat/v1-20240505-042908/checkpoint-990-merged \--load_dataset_config true

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/319979.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

​可视化大屏C位图:3D模型,可视化大屏的画龙点睛之处

Hello&#xff0c;我是大千UI工场&#xff0c;本期可视化大屏的焦点图&#xff08;C位&#xff09;分享将图表作为焦点图的情形&#xff0c;欢迎友友们关注、评论&#xff0c;如果有订单可私信。 3D模型在可视化大屏中有很大的价值&#xff0c;以下是一些相关的优点&#xff1a…

基于springboot实现在线考试系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现在线考试系统演示 摘要 使用旧方法对在线考试系统的信息进行系统化管理已经不再让人们信赖了&#xff0c;把现在的网络信息技术运用在在线考试系统的管理上面可以解决许多信息管理上面的难题&#xff0c;比如处理数据时间很长&#xff0c;数据存在错误不能及…

leetcode 1235

leetcode 1235 代码 class Solution { public:int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) {int n startTime.size();vector<vector<int>> jobs(n);for(int i0; i<n; i){jobs[i] …

JuiceFS v1.2-beta1,Gateway 升级,多用户场景权限管理更灵活

JuiceFS v1.2-beta1 今天正式发布。在这个版本中&#xff0c;除了进行了大量使用体验优化和 bug 修复外&#xff0c;新增三个特性&#xff1a; Gateway 功能扩展&#xff1a;新增了“身份和访问管理&#xff08;Identity and Access Management&#xff0c;IAM&#xff09;” 与…

JAVA面试专题-框架篇(Spring+Mybatis)

Spring Spring框架中的单例bean是线程安全的吗&#xff1f; bean上面可以加入注解Scope&#xff0c;如果是singleton&#xff08;默认&#xff09;&#xff0c;意味着bean在每个spring IOC容器中只有一个实例&#xff1b;如果是prototype&#xff0c;说明一个bean定义可以有多…

Centos上通过Docker安装ES管理端kibana

系列文章目录 文章目录 系列文章目录前言 前言 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站&#xff0c;这篇文章男女通用&#xff0c;看懂了就去分享给你的码吧。 Elasticsearch 是一…

《QT实用小工具·五十六》自适应界面变化的控件

1、概述 源码放在文章末尾 该项目实现了网格显示多张带文字的图片在界面中自适应布局 特点 跟随窗口大小变换位置&#xff0c;并带移动动画 响应鼠标事件&#xff0c;图片缩放动画 点击水波纹动画 项目demo演示如下所示&#xff1a; 项目部分代码如下所示&#xff1a; #i…

Electron+Vue3+Vite+ElectronForge整合 - 一键启动两个服务 一键打包两个服务

说明 本文介绍一下 Electron Vue3 Vite Electron Forge 的高级整合操作。vue3 : 使用 TS 的语法开发&#xff1b; Electron : 使用 JS 的语法开发。本文将从项目初始化开始&#xff0c;一步一步的完成项目的启动、打包全流程的介绍。实现的效果是 &#xff1a; 1、一个正常…

CRE-LLM:告别复杂特征工程,直接关系抽取

CRE-LLM&#xff1a;告别复杂特征工程&#xff0c;直接关系抽取 提出背景CRE-LLM 宏观分析CRE-LLM 微观分析1. 构建指令集&#xff08;Instruction Design&#xff09;2. 高效微调大型语言模型&#xff08;Efficient Fine-Tuning on LLMs&#xff09;3. 方法讨论&#xff08;Di…

Leetcode—706. 设计哈希映射【简单】(constexpr)

2024每日刷题&#xff08;127&#xff09; Leetcode—706. 设计哈希映射 数组实现代码 class MyHashMap { public:MyHashMap() {memset(arr, -1, sizeof(arr));}void put(int key, int value) {arr[key] value;}int get(int key) {if(arr[key] -1) {return -1;} return arr…

【在线OJ】Vue在线OJ项目

一、主页 二、题库 三、在线编译器 四、比赛 五、搜索 六、个人主页

保研面试408复习 2——操作系统、计网

文章目录 1、操作系统一、进程、线程的概念以及区别&#xff1f;二、进程间的通信方式&#xff1f; 2、计算机网络一、香农准则二、协议的三要素1. 语法2. 语义3. 时序 标记文字记忆&#xff0c;加粗文字注意&#xff0c;普通文字理解。 1、操作系统 一、进程、线程的概念以及…

VMware worksation 17 简易安装Centos8.2、Redhat8.2、Ubuntu16.04

系列文章目录 文章目录 系列文章目录前言一、VMware worksation 17 安装二、安装Centos8.2三、安装RHEL8.2四、安装Ubuntu16.04总结 前言 傻瓜式按照Linux系统&#xff0c;如果觉得简单&#xff0c;可以自定义设置&#xff0c;特别是配置一下磁盘空间大小&#xff0c;对以后排…

深入解析:匹配网络(Matching Networks)的原理和应用

匹配网络&#xff08;Matching Networks&#xff09; 深入解析&#xff1a;匹配网络&#xff08;Matching Networks&#xff09;的原理和应用匹配网络的核心原理工作原理算法流程 匹配网络的实现应用示例结论 深入解析&#xff1a;匹配网络&#xff08;Matching Networks&#…

使用docker-compose编排Lnmp(dockerfile) 完成Wordpress

目录 一、 Docker-Compose 1.1Docker-Compose介绍 1.2环境准备 1.2.1准备容器目录及相关文件 1.2.2关闭防火墙关闭防护 1.2.3下载centos:7镜像 1.3Docker-Compose 编排nginx 1.3.1切换工作目录 1.3.2编写 Dockerfile 文件 1.3.3修改nginx.conf配置文件 1.4Docker-Co…

leetCode74. 搜索二维矩阵

leetCode74. 搜索二维矩阵 二分法模板&#xff1a;见到背过就行 // 区间[L,R]被划分为[L,mid]和[mid 1, R]时使用这个模板 int bsearch_1(int l, int r){while(l < r){int mid l r >> 1;if(check(mid)) r mid; //check()判断mid是否满足性质else l mid 1;}retu…

Istio 流量管理(请求路由、流量转移、请求重试、流量镜像、故障注入、熔断等)介绍及使用

一、Istio 流量管理 Istio是一个开源的服务网格&#xff0c;它为分布式微服务架构提供了网络层的抽象。它使得服务之间的通信变得更为可靠、安全&#xff0c;并且提供了细粒度的流量管理、监控和策略实施功能。Istio通过在服务之间插入一个透明的代理&#xff08;Envoy&#x…

正则表达式_字符匹配/可选字符集

正则表达式&#xff08;Regular Expression&#xff09;也叫匹配模式(Pattern)&#xff0c;用来检验字符串是否满足特 定规则&#xff0c;或从字符串中捕获满足特定规则的子串。 字符匹配 最简单的正则表达式由“普通字符”和“通配符”组成。比如“Room\d\d\d”就这样 的正则…

有这样的黑色产业链你遇到了吗?

今天上午来到公司发现公司的数据库被黑了。还留下了勒索的信息&#xff0c;下面给大家粘贴上。现在这样的产业是不是很多。你怎么看 把公司的数据库全删除了。然后自己新建了一个数据库&#xff0c;又建立了一个表。里面写的内容如下。 omg! 肯定是扫描出来的。这个库对外暴…

ChatGPT Web Midjourney一键集成最新版

准备工具 服务器一台 推荐使用浪浪云服务器 稳定 安全 有保障 chatgpt api 推荐好用白嫖的api 项目演示 项目部署 浏览器访问casaos 添加软件原添加 https://gitee.com/langlangy_1/CasaOS-AppStore-LangLangy/raw/master/chatmjd.zip 安装此软件 等待安装 安装后再桌面设置…