软件杯 深度学习的水果识别 opencv python

文章目录

  • 0 前言
  • 2 开发简介
  • 3 识别原理
    • 3.1 传统图像识别原理
    • 3.2 深度学习水果识别
  • 4 数据集
  • 5 部分关键代码
    • 5.1 处理训练集的数据结构
    • 5.2 模型网络结构
    • 5.3 训练模型
  • 6 识别效果
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习的水果识别 opencv python

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 开发简介

深度学习作为机器学习领域内新兴并且蓬勃发展的一门学科, 它不仅改变着传统的机器学习方法, 也影响着我们对人类感知的理解,
已经在图像识别和语音识别等领域取得广泛的应用。 因此, 本文在深入研究深度学习理论的基础上, 将深度学习应用到水果图像识别中,
以此来提高了水果图像的识别性能。

3 识别原理

3.1 传统图像识别原理

传统的水果图像识别系统的一般过程如下图所示,主要工作集中在图像预处理和特征提取阶段。

在大多数的识别任务中, 实验所用图像往往是在严格限定的环境中采集的, 消除了外界环境对图像的影响。 但是实际环境中图像易受到光照变化、 水果反光、
遮挡等因素的影响, 这在不同程度上影响着水果图像的识别准确率。

在传统的水果图像识别系统中, 通常是对水果的纹理、 颜色、 形状等特征进行提取和识别。

在这里插入图片描述

3.2 深度学习水果识别

CNN 是一种专门为识别二维特征而设计的多层神经网络, 它的结构如下图所示,这种结构对平移、 缩放、 旋转等变形具有高度的不变性。

在这里插入图片描述

学长本次采用的 CNN 架构如图:
在这里插入图片描述

4 数据集

  • 数据库分为训练集(train)和测试集(test)两部分

  • 训练集包含四类apple,orange,banana,mixed(多种水果混合)四类237张图片;测试集包含每类图片各两张。图片集如下图所示。

  • 图片类别可由图片名称中提取。

训练集图片预览

在这里插入图片描述

测试集预览
在这里插入图片描述

数据集目录结构
在这里插入图片描述

5 部分关键代码

5.1 处理训练集的数据结构

import os
import pandas as pdtrain_dir = './Training/'
test_dir = './Test/'
fruits = []
fruits_image = []for i in os.listdir(train_dir):for image_filename in os.listdir(train_dir + i):fruits.append(i) # name of the fruitfruits_image.append(i + '/' + image_filename)
train_fruits = pd.DataFrame(fruits, columns=["Fruits"])
train_fruits["Fruits Image"] = fruits_imageprint(train_fruits)

5.2 模型网络结构

import matplotlib.pyplot as plt
import seaborn as sns
from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
from glob import glob
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, Flatten, Dense
img = load_img(train_dir + "Cantaloupe 1/r_234_100.jpg")
plt.imshow(img)
plt.axis("off")
plt.show()array_image = img_to_array(img)# shape (100,100)
print("Image Shape --> ", array_image.shape)# 131个类目
fruitCountUnique = glob(train_dir + '/*' )
numberOfClass = len(fruitCountUnique)
print("How many different fruits are there --> ",numberOfClass)# 构建模型
model = Sequential()
model.add(Conv2D(32,(3,3),input_shape = array_image.shape))
model.add(Activation("relu"))
model.add(MaxPooling2D())
model.add(Conv2D(32,(3,3)))
model.add(Activation("relu"))
model.add(MaxPooling2D())
model.add(Conv2D(64,(3,3)))
model.add(Activation("relu"))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation("relu"))
model.add(Dropout(0.5))# 区分131类
model.add(Dense(numberOfClass)) # output
model.add(Activation("softmax"))
model.compile(loss = "categorical_crossentropy",optimizer = "rmsprop",metrics = ["accuracy"])print("Target Size --> ", array_image.shape[:2])

5.3 训练模型

train_datagen = ImageDataGenerator(rescale= 1./255,shear_range = 0.3,horizontal_flip=True,zoom_range = 0.3)test_datagen = ImageDataGenerator(rescale= 1./255)
epochs = 100
batch_size = 32
train_generator = train_datagen.flow_from_directory(train_dir,target_size= array_image.shape[:2],batch_size = batch_size,color_mode= "rgb",class_mode= "categorical")test_generator = test_datagen.flow_from_directory(test_dir,target_size= array_image.shape[:2],batch_size = batch_size,color_mode= "rgb",class_mode= "categorical")for data_batch, labels_batch in train_generator:print("data_batch shape --> ",data_batch.shape)print("labels_batch shape --> ",labels_batch.shape)breakhist = model.fit_generator(generator = train_generator,steps_per_epoch = 1600 // batch_size,epochs=epochs,validation_data = test_generator,validation_steps = 800 // batch_size)#保存模型 model_fruits.h5
model.save('model_fruits.h5')

顺便输出训练曲线

#展示损失模型结果
plt.figure()
plt.plot(hist.history["loss"],label = "Train Loss", color = "black")
plt.plot(hist.history["val_loss"],label = "Validation Loss", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)
plt.title("Model Loss", color = "darkred", size = 13)
plt.legend()
plt.show()#展示精确模型结果
plt.figure()
plt.plot(hist.history["accuracy"],label = "Train Accuracy", color = "black")
plt.plot(hist.history["val_accuracy"],label = "Validation Accuracy", color = "darkred", linestyle="dashed",markeredgecolor = "purple", markeredgewidth = 2)
plt.title("Model Accuracy", color = "darkred", size = 13)
plt.legend()
plt.show()

在这里插入图片描述

在这里插入图片描述

6 识别效果

from tensorflow.keras.models import load_model
import os
import pandas as pdfrom keras.preprocessing.image import ImageDataGenerator,img_to_array, load_img
import cv2,matplotlib.pyplot as plt,numpy as np
from keras.preprocessing import imagetrain_datagen = ImageDataGenerator(rescale= 1./255,shear_range = 0.3,horizontal_flip=True,zoom_range = 0.3)model = load_model('model_fruits.h5')
batch_size = 32
img = load_img("./Test/Apricot/3_100.jpg",target_size=(100,100))
plt.imshow(img)
plt.show()array_image = img_to_array(img)
array_image = array_image * 1./255
x = np.expand_dims(array_image, axis=0)
images = np.vstack([x])
classes = model.predict_classes(images, batch_size=10)
print(classes)
train_dir = './Training/'train_generator = train_datagen.flow_from_directory(train_dir,target_size= array_image.shape[:2],batch_size = batch_size,color_mode= "rgb",class_mode= "categorical”)
print(train_generator.class_indices)

在这里插入图片描述

fig = plt.figure(figsize=(16, 16))
axes = []
files = []
predictions = []
true_labels = []
rows = 5
cols = 2# 随机选择几个图片
def getRandomImage(path, img_width, img_height):"""function loads a random image from a random folder in our test path"""folders = list(filter(lambda x: os.path.isdir(os.path.join(path, x)), os.listdir(path)))random_directory = np.random.randint(0, len(folders))path_class = folders[random_directory]file_path = os.path.join(path, path_class)file_names = [f for f in os.listdir(file_path) if os.path.isfile(os.path.join(file_path, f))]random_file_index = np.random.randint(0, len(file_names))image_name = file_names[random_file_index]final_path = os.path.join(file_path, image_name)return image.load_img(final_path, target_size = (img_width, img_height)), final_path, path_classdef draw_test(name, pred, im, true_label):BLACK = [0, 0, 0]expanded_image = cv2.copyMakeBorder(im, 160, 0, 0, 300, cv2.BORDER_CONSTANT, value=BLACK)cv2.putText(expanded_image, "predicted: " + pred, (20, 60), cv2.FONT_HERSHEY_SIMPLEX,0.85, (255, 0, 0), 2)cv2.putText(expanded_image, "true: " + true_label, (20, 120), cv2.FONT_HERSHEY_SIMPLEX,0.85, (0, 255, 0), 2)return expanded_image
IMG_ROWS, IMG_COLS = 100, 100# predicting images
for i in range(0, 10):path = "./Test"img, final_path, true_label = getRandomImage(path, IMG_ROWS, IMG_COLS)files.append(final_path)true_labels.append(true_label)x = image.img_to_array(img)x = x * 1./255x = np.expand_dims(x, axis=0)images = np.vstack([x])classes = model.predict_classes(images, batch_size=10)predictions.append(classes)class_labels = train_generator.class_indices
class_labels = {v: k for k, v in class_labels.items()}
class_list = list(class_labels.values())for i in range(0, len(files)):image = cv2.imread(files[i])image = draw_test("Prediction", class_labels[predictions[i][0]], image, true_labels[i])axes.append(fig.add_subplot(rows, cols, i+1))plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))plt.grid(False)plt.axis('off')
plt.show()

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/320022.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue3+Nuxt3 从0到1搭建官网项目(SEO搜索、中英文切换、图片懒加载)

Vue2Nuxt2 从 0 到1 搭建官网~ Vue3Nuxt3 从0到1搭建官网项目 安装 Nuxt3,创建项目初始化的 package.json项目结构初始化项目pages 文件下创建index.vue引入sass修改 app.vue 文件查看效果 配置公共的css、metaassets下的cssreset.scss 重置文件common.scss 配置nux…

CTF-WEB(MISC)

安全攻防知识——CTF之MISC - 知乎 CTF之MISC杂项从入门到放弃_ctf杂项 你的名字-CSDN博客 CTF MICS笔记总结_archpr 掩码攻击-CSDN博客 一、图片隐写 CTF杂项---文件类型识别、分离、合并、隐写_ctf图片分离-CSDN博客 EXIF(Exchangeable Image File)是…

考虑极端天气线路脆弱性的配电网分布式电源和储能优化配置模型

1 主要内容 程序主要参考《考虑极端天气线路脆弱性的配电网分布式电源配置优化模型-马宇帆》,针对极端天气严重威胁配电网安全稳定运行的问题。基于微气象、微地形对配电网的线路脆弱性进行分析,然后进行分布式电源接入位置与极端天气的关联性分析&…

​【收录 Hello 算法】第 3 章 数据结构

第 3 章 数据结构 Abstract 数据结构如同一副稳固而多样的框架。 它为数据的有序组织提供了蓝图,算法得以在此基础上生动起来。 本章内容 3.1 数据结构分类3.2 基本数据类型3.3 数字编码 *3.4 字符编码 *3.5 小结

Java | Leetcode Java题解之第59题螺旋矩阵II

题目&#xff1a; 题解&#xff1a; class Solution {public int[][] generateMatrix(int n) {int num 1;int[][] matrix new int[n][n];int left 0, right n - 1, top 0, bottom n - 1;while (left < right && top < bottom) {for (int column left; co…

uniapp:K线图,支持H5,APP

使用KLineChart完成K线图制作,完成效果: 1、安装KLineChart npm install klinecharts2、页面中使用 <template><view class="index"><!-- 上方选项卡 --><view class="kline-tabs"><view :style="{color: current==ite…

《动手学深度学习(Pytorch版)》Task03:线性神经网络——4.29打卡

《动手学深度学习&#xff08;Pytorch版&#xff09;》Task03&#xff1a;线性神经网络 线性回归基本元素线性模型损失函数随机梯度下降 正态分布与平方损失 线性回归的从零开始实现读取数据集初始化模型参数定义模型定义损失函数定义优化算法训练 线性回归的简洁实现读取数据集…

【c++】Resharper 去掉中文注释拼写

参考大神&#xff1a; Resharper 去掉注释拼写 reshaper的中文注释一堆下划线&#xff0c;看的很累、很乱&#xff1a; options 里 在code inspetion里 搜索 去掉 Typo in comment 就可以不在中文注释提示 重启vs reshaperd 中文注释下划线没了。小番茄的还在。

jsPDF + html2canvas + Vue3 + ts项目内,分页导出当前页面为PDF、A 页面内导出 B 页面的内容为PDF,隐藏导出按钮等多余元素

jsPDF html2canvas Vue3 ts Arco Design项目&#xff0c;分页导出当前页面为PDF、A 页面内导出 B 页面的内容为PDF&#xff0c;隐藏导出按钮等多余元素… 1.下载所需依赖 pnpm install --save html2canvaspnpm install --save jspdf引入依赖 <script setup lang"…

2010NOIP普及组真题 3. 导弹拦截

线上OJ&#xff1a; 一本通&#xff1a;http://ybt.ssoier.cn:8088/problem_show.php?pid1951 核心思想&#xff1a; 1、我们把导弹分为区间1和区间2来看。1#拦截区间1&#xff0c;2#拦截区间2。 2、则&#xff1a;1#的拦截半径为区间1 中 最远的导弹&#xff0c;而2#的拦截半…

关于 c++的模板库中的数组模板 is_array_v的测试

&#xff08;1&#xff09;该模板的源代码如下&#xff1a; template <class> // determine whether type argument is an array bool is_array_v false;template <class _Ty, size_t _Nx> bool is_array_v<_Ty[_Nx]> true;template <class _Ty>…

学习java中的interface接口

1.了解接口 java提供了一个关键字interface&#xff0c;用这个关键字我们可以定义出一个特殊的结构&#xff1a;接口 格式&#xff1a; public interface 接口名{ //成员变量&#xff08;常量&#xff09; //成员方法&#xff08;抽象方法&#xff09; } 注意&#xff1a;接…

Python——Fastapi管理平台(打包+优化)

目录 一、配置多个表 1、后端项目改造 2、导包报错——需要修改&#xff08;2个地方&#xff09; 3、启动后端&#xff08;查看是否有问题&#xff09; 4、配置前端 二、打包——成exe文件&#xff08;不包含static文件&#xff09;简单 1、后端修改 2、前端修改 3、运行打包命…

[论文笔记]Longformer: The Long-Document Transformer

引言 今天带来论文Longformer: The Long-Document Transformer的笔记。 基于Transformer的模型由于其自注意力操作而无法处理长序列&#xff0c;该操作随着序列长度呈二次扩展。为了解决这一限制&#xff0c;本篇工作提出了Longformer&#xff0c;其注意力机制随着序列长度呈…

批量邮箱API发送邮件的方法?如何使用API?

批量邮箱API发送邮件效率怎么样&#xff1f;API接口发信的优势&#xff1f; 批量发送邮件已经成为许多企业、机构或个人进行营销推广、信息传递的重要手段。然而&#xff0c;如何高效、准确地实现批量邮箱发送&#xff0c;却是许多人面临的难题。AokSend就来探讨一下利用API进…

Python基础学习之logging模块

在Python编程中&#xff0c;日志记录&#xff08;Logging&#xff09;是一个非常重要的功能。它不仅可以帮助我们追踪和调试代码中的错误&#xff0c;还可以记录程序运行时的关键信息&#xff0c;以便后续分析和优化。Python标准库中的logging模块为我们提供了强大的日志记录功…

C++从入门到精通——模板

模板 前言一、泛型编程二、函数模板函数模板的概念函数模板格式示例 函数模板的原理函数模板的实例化隐式实例化显式实例化示例 auto做模板函数的返回值模板参数的匹配原则总结 三、类模板类模板的定义格式类模板的实例化 前言 C模板是C语言中的一种泛型编程技术&#xff0c;可…

IDEA--debug

1. 单点调试的三个级别 Step into&#xff1a;在单步执行时&#xff0c;遇到子函数就进入并且继续单步执行。Step over&#xff1a;在单步执行时&#xff0c;在函数内遇到子函数时不会进入子函数内单步执行&#xff0c;而是将子函数整个执行完再停止&#xff0c;也就是把子函数…

【保姆级教程】用IDEA2023版本给RuoYi-Vue添加子模块

文章目录 前言添加子模块新建子模块新建子模块界面&#xff1f;新建子模块界面&#xff01; 修改pom依赖配置RuoYiApplication添加测试接口配置接口权限测试 前言 若依前后端分离框架能够极大方便当前开发任务&#xff0c;并且使用的技术栈也相当丰富&#xff0c;但是目前只提…

ThingsBoard通知中心讲解

1、概述 2、案例 2.1、通知发送方式 2.2、发送通知 3、Templates模板 3.1、Add new template添加新模板 1、概述 ThingsBoard 通知中心是一个用于在平台内发送、管理和自动化通知的综合工具。它允许多种通知方法&#xff0c;包括网络、电子邮件、移动应用程序、短信以及与 …