文献速递:深度学习医学影像心脏疾病检测与诊断--从SPECT/CT衰减图中深度学习冠状动脉钙化评分提高了对重大不良心脏事件的预测

Title 

题目

Deep Learning Coronary Artery Calcium Scores from SPECT/CT Attenuation Maps Improve Prediction of Major Adverse Cardiac Events

从SPECT/CT衰减图中深度学习冠状动脉钙化评分提高了对重大不良心脏事件的预测

01

文献速递介绍

低剂量非门控CT衰减校正(CTAC)扫描常常在SPECT/CT心肌灌注成像中获取。尽管CTAC的图像质量特征上较低,但深度学习(DL)可以潜在地从这些扫描中自动量化冠状动脉钙化(CAC)。我们评估了使用DL模型得出的CAC量化结果,包括与专家注释的相关性以及与主要不良心血管事件(MACE)的关联。方法:我们训练了一个卷积长短期记忆DL模型,使用6608个研究(2个中心)自动量化CTAC扫描上的CAC,并在一个外部患者队列中评估了该模型,该队列中的患者没有已知的冠状动脉疾病(n = 2271),并在另一个中心获取。我们评估了DL和专家注释的CAC分数之间的一致性。我们还评估了DL自动获取的CAC类别(0、1-100、101-400或>400)与MACE(死亡、血管重建、心肌梗死或不稳定性心绞痛)之间的关联,这些分数是由经验丰富的读者手动推导出来的,并使用多变量Cox模型(根据年龄、性别、既往病史、灌注和射血分数进行调整)和净再分类指数进行评估。结果:在外部测试人群中,DL CAC为0的患者有908例(40.0%),1-100的有596例(26.2%),100-400的有354例(15.6%),400以上的有413例(18.2%)。DL CAC与专家注释的CAC类别一致性较好(线性加权k值为0.80),但DL CAC的获取时间少于2秒,而专家CAC约为2.5分钟。与CAC为零相比,DL CAC类别是MACE的独立危险因素,其风险比分别为CAC为1-100(2.20;95% CI,1.54-3.14;P <0.001)、CAC为101-400(4.58;95% CI,3.23-6.48;P <0.001)和CAC为400以上(5.92;95% CI,4.27-8.22;P <0.001)。总体而言,DL CAC的净再分类指数为0.494,与专家注释的CAC(0.503)类似。结论:来自SPECT/CT衰减校正图的DL CAC与专家CAC注释相符,并提供类似的风险分层,但可以自动获取。与仅使用SPECT心肌灌注相比,DL CAC分数改善了相当比例的患者的分类。

Method

方法

Patients who underwent SPECT/CT MPI with CTAC at 1 of 2 cen ters (Yale and Cardiovascular Imaging Technologies) were used to train the convLSTM. Patients who underwent SPECT/CT MPI from a third center (University of Calgary) were used as an external testing cohort. Patients without CTAC were excluded. For external testing, patients with a history of coronary artery disease (n 5 673), defined as previousmyocardial infarction or revascularization with either percutaneous coronary intervention or coronary artery bypass grafting (15), were excluded.Details of the clinical data acquisition are provided in the supplemental materials (available at http://jnm.snmjournals.org). The study protocolcomplied with the Declaration of Helsinki. The study was approved bythe institutional review board at all sites. To the extent allowed by datasharing agreements and institutional review board protocols, data andcodes used in this article will be shared on written request.

研究人群

接受了SPECT/CT MPI与CTAC扫描的患者,其中1中心为耶鲁大学,另1中心为心血管影像技术中心,用于训练convLSTM模型。来自第三个中心(卡尔加里大学)接受了SPECT/CT MPI的患者则用作外部测试队列。没有进行CTAC扫描的患者被排除在外。在外部测试中,具有冠状动脉疾病史(n = 673)的患者被排除,其定义为先前的心肌梗死或经皮冠状动脉介入术或冠状动脉旁路移植术进行过血管重建(15)。临床数据采集的详细信息在补充材料中提供(可在http://jnm.snmjournals.org找到)。该研究方案符合《赫尔辛基宣言》。该研究得到了所有研究机构审查委员会的批准。根据数据共享协议和机构审查委员会的协议,本文中使用的数据和代码将根据书面请求进行分享。

Conclusion

结论

DL CAC derived from SPECT/CT attenuation maps agrees wellwith expert CAC annotations. DL and expert annotated CAC areassociated with MACE, but DL scores can be obtained automatically in a few seconds. DL CAC scores can be quantified automatically after SPECT/CT MPI, without impeding clinical workflow,to improve classification of a significant proportion of patients.

来自SPECT/CT衰减图的DL CAC与专家注释的CAC一致。DL和专家注释的CAC与MACE相关联,但DL分数可以在几秒钟内自动获得。在SPECT/CT MPI后,DL CAC分数可以自动量化,不会妨碍临床工作流程,从而改善相当比例患者的分类。

Figure

图片

FIGURE 1. Outline of model architecture. ConvLSTM includes network trained to segment CAC, as well as second network for segmentation of heart, which limits CAC scoring. Softmax argmax function normalizes output of network to expected probabilities. Model identifies coronary calcium(red) and noncoronary calcium (green) within heart mask.

图1. 模型架构概述。ConvLSTM包括用于分割CAC的网络,以及用于限制CAC评分的心脏分割的第二个网络。Softmax argmax函数将网络的输出归一化为预期的概率。模型在心脏掩模内识别冠状动脉钙化(红色)和非冠状动脉钙化(绿色)。

图片

FIGURE 2. Examples of expert scores compared with DL CAC scores. Model identifies coronary calcium (red) and noncoronary calcium (green). In case 1, expert and DL annotations identified simi lar left circumflex CAC as well as ascending aorta calcium. No CAC was identified by either expertor DL scoring in case 2. In case 3, expert and DL annotations identified similar right coronary arteryCAC as well as mitral annular calcification. BMI 5 body mass index.

图2. 专家评分与DL CAC评分的示例比较。模型识别冠状动脉钙化(红色)和非冠状动脉钙化(绿色)。在案例1中,专家和DL注释识别了类似的左回旋支CAC以及升主动脉钙化。在案例2中,专家或DL评分均未识别到CAC。在案例3中,专家和DL注释识别了类似的右冠状动脉CAC以及二尖瓣环钙化。BMI表示身体质量指数。

图片

FIGURE 3. Concordance matrix between DL and expert CAC categories in external testing population.

图3. 外部测试人群中DL和专家CAC类别之间的一致性矩阵。

图片

FIGURE 4. Kaplan–Meier survival curves for MACE. Increasing CAC category was associated with increasing risk of MACE for DL and expert annotated CAC scores on SPECT/CT attenuation maps.

图4.Kaplan-Meier生存曲线的MACE。在SPECT/CT衰减图上,DL和专家注释的CAC分数与MACE的风险增加相关。

图片

FIGURE 5.  Results of net-reclassification analysis. We assessed addition of CAC categories to full multivariable model outlined in Table 2.

图5. 净再分类分析结果。我们评估了将CAC类别添加到表2中概述的完整多变量模型中的效果。

Table

图片

TABLE 1 External Testing: Patient Characteristics According to CAC Category Determined by Deep-Learning Model

表1 外部测试:根据深度学习模型确定的CAC类别的患者特征

图片

TABLE 2 Associations with MACE

 表2 MACE相关性

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/320780.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

红黑树(RBTree)认识总结

一、认识红黑树 1.1 什么是红黑树&#xff1f; 红黑树是一种二叉搜索树&#xff0c;与普通搜索树不同的是&#xff0c;在每个节点上增加一个“颜色”变量 —— RED / BLACK 。 通过对各个节点颜色的限制&#xff0c;确保从 根 到 NIL &#xff0c;没有一条路径会比其他路径长出…

Golang | Leetcode Golang题解之第61题旋转链表

题目&#xff1a; 题解&#xff1a; func rotateRight(head *ListNode, k int) *ListNode {if k 0 || head nil || head.Next nil {return head}n : 1iter : headfor iter.Next ! nil {iter iter.Nextn}add : n - k%nif add n {return head}iter.Next headfor add > …

8.k8s中网络资源service

目录 一、service资源概述 二、service资源类型 1.ClusterIP类型 2.service的nodeport类型 3.service的loadbalancer类型&#xff08;了解即可&#xff09; 4.service的externalname类型&#xff08;了解即可&#xff09; 三、nodeport的端口范围设置和svc的endpoint列表 1.修…

spring高级篇(十)

1、内嵌tomcat boot框架是默认内嵌tomcat的&#xff0c;不需要手动安装和配置外部的 Servlet 容器。 简单的介绍一下tomcat服务器的构成&#xff1a; Catalina&#xff1a; Catalina 是 Tomcat 的核心组件&#xff0c;负责处理 HTTP 请求、响应以及管理 Servlet 生命周期。它包…

视频改字祝福/豪车装X系统源码/小程序uniapp前端源码

uniapp视频改字祝福小程序源码&#xff0c;全开源。创意无限&#xff01;AI视频改字祝福&#xff0c;豪车装X系统源码开源&#xff0c;打造个性化祝福视频不再难&#xff01; 想要为你的朋友或家人送上一份特别的祝福&#xff0c;让他们感受到你的真诚与关怀吗&#xff1f;现在…

Linux-信号概念

1. 什么是信号 信号本质是一种通知机制&#xff0c;用户or操作系统通过发送信号通知进程&#xff0c;进程进行后续处理 在日常生活中就有很多例子&#xff0c;比如打游戏方面王者荣耀的“进攻”&#xff0c;“撤退”&#xff0c;“请求集合”&#xff0c;“干得漂亮&#xff01…

【Unity动画系统】动画层级(Animation Layer)讲解与使用

如何使用Unity的Animation Layer和Avater Mask把多个动画组合使用 想让玩家持枪行走&#xff0c;但是手里只有行走和持枪站立的动作。 Unity中最方便的解决办法就是使用动画层级animation layer以及替身蒙版avatar mask。 创建一个动画层级 Weight表示权重&#xff0c;0的话则…

PXE高效批量网络装机

一.PXE概述 PXE批量部署的优点 规模化&#xff1a;同时装配多台服务器自动化&#xff1a;安装系统、配置各种服务远程实现&#xff1a;不需要光盘、U盘等安装介质 PXE&#xff08;Preboot eXcution Environment&#xff09; 预启动执行环境&#xff0c;在操作系统之前运行 …

【从零开始学架构 前言】整体的学习路线

本文是《从零开始学架构》的第一篇学习笔记&#xff0c;在工作6年左右的这个时间点需要有一些先行的理论来指导即将面临的复杂实践&#xff0c;以便在真正面临复杂实践的时候能有所参照。 主要从以下几个方面和顺序来进行学习 架构基础&#xff1a;从架构设计的本质、历史背景…

最详细的IP SSL证书介绍及申请渠道

JoySSL官网 注册码230918 在互联网的广阔舞台上&#xff0c;每个参与其中的设备都需要一个独一无二的标识——IP地址&#xff0c;以实现精准的通信和数据交换。随着网络安全重要性的日益凸显&#xff0c;如何验证和信任这些IP地址的真实性成为了一个核心问题。正是在这样的背景…

(数据分析方法)相关性分析

目录 一、定义 二、相关关系分类 三、数据可视化(散点图) 四、相关分析 4.1 量化指标 4.1.1 相关系数 4.1.1.1 皮尔森&#xff08;Pearson&#xff09;相关系数 4.1.1.2 斯皮尔曼&#xff08;Spearman&#xff09;相关系数 4.1.1.3 肯达尔&#xff08;Kendall&#xff…

JavaScript中的RegExp和Cookie

个人主页&#xff1a;学习前端的小z 个人专栏&#xff1a;JavaScript 精粹 本专栏旨在分享记录每日学习的前端知识和学习笔记的归纳总结&#xff0c;欢迎大家在评论区交流讨论&#xff01; 文章目录 &#x1f506;RegExp &#x1f3b2; 1 什么是正则表达式 &#x1f3b2;2 创建…

【go项目01_学习记录04】

学习记录 1 集成 Gorilla Mux1.1 为什么不选择 HttpRouter&#xff1f;1.2 安装 gorilla/mux1.3 使用 gorilla/mux1.4 迁移到 Gorilla Mux1.4.1 新增 homeHandler1.4.2 指定 Methods () 来区分请求方法1.4.3 请求路径参数和正则匹配1.4.4 命名路由与链接生成 1 集成 Gorilla Mu…

springboot+vue+elementui实现校园互助平台大作业、毕业设计

目录 一、项目介绍 二、项目截图 管理后台 1.登录&#xff08;默认管理员账号密码均为&#xff1a;admin&#xff09; 2. 用户管理 ​编辑 3.任务管理 互助单&#xff08;学生发布&#xff09; 行政单&#xff08;教师发布&#xff09; ​编辑 审核&#xff08;退回需…

【无标题】不锈钢轴承能耐高温多少度:开启润滑技术新纪元

江苏鲁岳SIAIF品牌的不锈钢耐高温轴承的具体耐高温性能会因轴承的型号、材料、制造工艺等因素而有所不同。然而&#xff0c;一般来说&#xff0c;不锈钢轴承的耐高温性能较高&#xff0c;可以在高温环境下正常工作。 根据相关资料&#xff0c;SIAIF不锈钢耐高温轴承可以在-60℃…

Linux基本指令(下下)

各位大佬好 &#xff0c;这里是阿川的博客 &#xff0c; 祝您变得更强 个人主页&#xff1a;在线OJ的阿川 大佬的支持和鼓励&#xff0c;将是我成长路上最大的动力 阿川水平有限&#xff0c;如有错误&#xff0c;欢迎大佬指正 本篇博客续我之前的Linux指令&#xff08;下&a…

数据库提权

1.此时实验需要用到的软件&#xff1a; &#xff08;1&#xff09;phpStudy该程序包集成最新的ApachePHPMySQL phpMyAdminZendOptimizer,一次性安装,无须配置即可使用,是非常方便、好用的PHP调试环境.该程序不仅包括PHP调试环境,还包括了开发工具、开发手册等.总之学习PHP只需…

C#队列(Queue)的基本使用

概述 在编程中&#xff0c;队列&#xff08;Queue&#xff09;是一种常见的数据结构&#xff0c;它遵循FIFO&#xff08;先进先出&#xff09;的原则。在C#中&#xff0c;.NET Framework提供了Queue<T>类&#xff0c;它位于System.Collections.Generic命名空间下&#x…

基于.NET WinForms 数据CURD功能的实现

使用开发工具 VS 2022 C#&#xff0c;数据库MS SQL SERVER 2019 &#xff0c;基于NET WinForms&#xff0c;实现数据记录的创建(Create)、更新(Update)、读取(Read)和删除(Delete)等功能。主要控件包括&#xff1a;DataGridView&#xff0c;SqlDataApater &#xff0c; DataTab…

MATLAB绘制蒸汽压力和温度曲线

蒸汽压力与温度之间的具体关系公式一般采用安托因方程&#xff08;Antoine Equation&#xff09;&#xff0c;用于描述纯物质的蒸汽压与温度之间的关系。安托因方程的一般形式如下&#xff1a; [\log_{10} P A - \frac{B}{C T}] 其中&#xff0c; (P) 是蒸汽压&#xff08…