深入了解 NumPy:深度学习中的数学运算利器

文章目录

      • 1. 导入NumPy
      • 2. 创建NumPy数组
      • 3. 数组的算术运算
      • 4. N维数组
        • 4.1 创建和操作多维数组
        • 4.2 高维数组
      • 5. NumPy的广播功能
        • 5.1 基本广播示例
        • 5.2 更复杂的广播示例
      • 6. 访问数组元素
        • 6.1 基于索引的访问
        • 6.2 遍历数组
        • 6.3 基于条件的访问
        • 6.4 高级索引
        • 6.5 性能考虑

在深度学习和数据科学的领域,数学运算尤为重要,而NumPy库则是Python中处理这些计算的核心工具。NumPy(Numerical Python的缩写)提供了一个强大的数组对象:numpy.ndarray,它是多维数组的核心,并带有大量的便捷方法,使得数学运算变得简洁而高效。

1. 导入NumPy

NumPy并不是Python标准库的一部分,需要单独安装和导入。在Python中,通过简单的导入声明可以轻松访问NumPy库:

import numpy as np

通过np这个别名来使用NumPy的各种功能,提高代码的可读性和易用性。

2. 创建NumPy数组

NumPy的核心功能之一是其数组处理能力。通过np.array()函数,可以将Python的列表转换成numpy.ndarray对象(即NumPy数组):

x = np.array([1.0, 2.0, 3.0])
print(x)
# 输出: [1. 2. 3.]

3. 数组的算术运算

NumPy数组支持元素级的算术运算,这意味着运算会应用到数组中的每一个元素上。

x = np.array([1.0, 2.0, 3.0])
y = np.array([2.0, 4.0, 6.0])

在NumPy中,进行基本运算如加法、减法、乘法和除法时,这些操作是按元素进行的:

print(x + y)  # 对应元素相加:[3. 6. 9.]
print(x - y)  # 对应元素相减:[-1. -2. -3.]
print(x * y)  # 对应元素相乘:[2. 8. 18.]
print(x / y)  # 对应元素相除:[0.5 0.5 0.5]

重要的是,进行这些操作的两个数组必须具有相同的形状或兼容的形状。如果形状不匹配,NumPy会尝试广播数组以匹配形状,如果无法广播,则会抛出一个错误(广播在后面有解释)

此外,NumPy也支持数组与标量之间的运算,这表现在所谓的广播(broadcast)特性上,允许小规模数据结构与大规模数据结构间进行算术运算:

print(x / 2.0)  # 每个元素除以2:[0.5 1.0 1.5]

4. N维数组

NumPy提供了强大的多维数组支持,这使其在科学计算中发挥了至关重要的作用。它能够处理从一维数组(向量)、二维数组(矩阵)到更高维度的数组(张量),用于表示各种复杂的数据结构。

4.1 创建和操作多维数组

以二维数组为例,可以轻松地创建和进行算术运算:

import numpy as np# 创建一个2x2的二维数组
A = np.array([[1, 2], [3, 4]])
print(A)
# 输出:
# [[1 2]
#  [3 4]]# 查看数组的形状和数据类型
print("Shape:", A.shape)  # Shape: (2, 2)
print("Data type:", A.dtype)  # Data type: int64# 创建另一个2x2的二维数组
B = np.array([[3, 0], [0, 6]])# 数组的加法和元素级乘法
print("A + B =", A + B)
# 输出:
# A + B = [[ 4  2]
#          [ 3 10]]
print("A * B =", A * B)
# 输出:
# A * B = [[ 3  0]
#          [ 0 24]]

在NumPy中,数组的算术运算是元素级的,意味着操作会在两个数组的相应元素间进行。此外,NumPy的广播功能允许执行如标量与数组之间的运算,这在实际应用中非常有用:

# 标量与数组的乘法
print("A * 10 =", A * 10)
# 输出:
# A * 10 = [[10 20]
#           [30 40]]
4.2 高维数组

NumPy的能力不限于一维或二维数组。它可以创建和操作任何高度的多维数组。例如,三维或更高维度的数组通常用于数据科学和机器学习中,处理如图像数据(宽度、高度、颜色通道)或时间序列数据(数据点、时间步长、特征数量):

# 创建一个3维数组
Z = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],[[10, 11, 12], [13, 14, 15], [16, 17, 18]],[[19, 20, 21], [22, 23, 24], [25, 26, 27]]])print(Z)
# 可以访问特定的层、行、列
print("Access a specific element:", Z[1, 2, 0])  # 访问第二层,第三行,第一个元素(16)

5. NumPy的广播功能

NumPy的广播功能是其数组操作中一个非常强大的特性,允许在执行算术运算时自动扩展一个较小的数组以匹配一个较大数组的形状,无需显式复制数据。

5.1 基本广播示例

当使用标量与数组进行运算时,标量会被广播到数组的每个元素上:

import numpy as npA = np.array([[1, 2], [3, 4]])
# 标量与二维数组的乘法
result = A * 10
print(result)
# 输出:
# [[10 20]
#  [30 40]]

在这里插入图片描述

在这个例子中,标量10被广播成与数组A相同的形状,然后与数组中的每个元素相乘。

5.2 更复杂的广播示例

广播功能也适用于维度不一致但兼容的数组之间。例如,当一维数组与二维数组相乘时,一维数组会沿着缺少的维度被扩展,以匹配较大的数组:

B = np.array([10, 20])
# 一维数组与二维数组的元素级乘法
result = A * B
print(result)
# 输出:
# [[10 40]
#  [30 80]]

在这里插入图片描述

一维数组B的每个元素被广播到了A的对应行上,使得乘法能够按元素执行。

6. 访问数组元素

NumPy数组提供了多种灵活的元素访问方法,这包括基于索引的访问以及基于条件的访问,极大地简化了数据操作和处理。

6.1 基于索引的访问

在NumPy数组中,每个元素的位置由从零开始的索引确定。可以通过指定位置的索引来访问单个数组元素,或者通过切片来访问数组的一个区段:

import numpy as npX = np.array([[51, 55], [14, 19], [0, 4]])
print("第0行:", X[0])  # 访问第一行
# 输出: [51 55]
print("位置(0,1)的元素:", X[0][1])  # 访问第一行的第二个元素
# 输出: 55
6.2 遍历数组

NumPy数组也支持使用循环来遍历元素,例如使用for循环遍历每一行:

for row in X:print(row)
# 输出:
# [51 55]
# [14 19]
# [0 4]
6.3 基于条件的访问

NumPy支持使用条件表达式来选择数组中满足特定条件的元素。这种方法返回一个布尔数组,可以用于索引原数组:

# 找出所有大于15的元素
filtered = X[X > 15]
print("大于15的元素:", filtered)
# 输出: [51 55 19]
6.4 高级索引

NumPy允许使用数组索引来访问数据,这对于从数组中选择一个非连续的元素子集特别有用:

X_flat = X.flatten()  # 将X转换为一维数组
print("转换后的一维数组:", X_flat)
# 输出: [51 55 14 19 0 4]indices = np.array([0, 2, 4])
selected_elements = X_flat[indices]  # 通过索引数组访问元素
print("选定索引的元素:", selected_elements)
# 输出: [51 14 0]
6.5 性能考虑

尽管Python是一种动态类型的语言,其运算速度通常不如C和C++这样的静态类型语言,但是NumPy的大部分数值计算都是用C或C++实现的。这意味着NumPy能够提供接近于编译型语言的性能,同时保持Python语言的灵活性和易用性。因此,使用NumPy可以在不牺牲性能的前提下,利用Python便捷的语法进行高效的数学和逻辑运算。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/322335.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VisualGDB : 在windows上开发和调试Linux代码(一)

传送门: 《VisualGDB : 解决编码导致的编译错误》 一、补充windows上 VisualGDB的安装 这里给大家附一个官方的下载路径:https://visualgdb.com/download/,根据自己的系统选择下载 笔者另附一个云盘的下载路径 VisualGDB https…

BACnet转MQTT网关智联楼宇json格式自定义

智能建筑的BACnet协议作为楼宇自动化领域的通用语言,正逐步迈向更广阔的物联网世界。随着云计算和大数据技术的飞速发展,如何将BACnet设备无缝融入云端生态系统,成为众多楼宇管理者关注的焦点。本文将以一个实际案例,揭示BACnet网…

spring高级篇(八)

本篇对Spring MVC 的执行流程做一个简单总结 MVC执行流程总结 当浏览器发送一个请求,例如http://localhost:8080/hello,请求到达服务器后,一般会进行如下操作: 1、首先会经过DispatcherServlet,默认映射路径为 /&…

element-plus el-cascader 懒加载实现-省市区街道选择及回显

大概思路: 准备一个接口可以通过父Id,查询到下一级省市区街道的信息;如下方的getRegionListOne确定后端的数据结构,需要在created里边处理数据回显逻辑el-cascader接收的数据格式是[‘’,‘’,‘’];后端的数据格式多为[{provinceId: ‘’, …

贪心算法(活动选择、分数背包问题)

一、贪心算法 贪心算法是指:在对问题求解时,总是做出在当前看来是最好的选择,而不从整体最优考虑,做出的仅是在某种意义上的局部最优解。 …

从零开始的软件测试学习之旅(九)jmeter直连数据库及jmeter断言,关联

jmeter直连数据库及断言,关联 jmeter直连数据库步骤jmeter断言jmeter逻辑控制器if控制器ForEach控制器循环控制器 Jmeter关联Jmeter关联XPath提取器Jmeter关联正则表达式提取器二者比较跨线程组关联 每日复习 jmeter直连数据库 概念 这不叫直连:Jmeter -> java/python 提供的…

【linuxC语言】fcntl和ioctl函数

文章目录 前言一、功能介绍二、具体使用2.1 fcntl函数2.2 ioctl函数 三、拓展:填写arg总结 前言 在Linux系统编程中,经常会涉及到对文件描述符、套接字以及设备的控制操作。fcntl和ioctl函数就是用来进行这些控制操作的两个重要的系统调用。它们提供了对…

JavaEE 多线程详细讲解(1)

1.线程是什么 (shift F6)改类名 1.1.并发编程是什么 (1)当前的CPU,都是多核心CPU (2)需要一些特定的编程技巧,把要完成的仍无,拆解成多个部分,并且分别让…

Leetcode—933. 最近的请求次数【简单】

2024每日刷题&#xff08;128&#xff09; Leetcode—933. 最近的请求次数 实现代码 class RecentCounter { public:RecentCounter() {}int ping(int t) {q.push(t);while(t - 3000 > q.front()) {q.pop();}return q.size();} private:queue<int> q; };/*** Your Re…

嵌入式学习69-C++(Opencv)

知识零碎&#xff1a; QT的两种编译模式 1.debug 调试模式 …

c 双向链表

图片 #include <stdio.h> #include <stdlib.h> #include <string.h>int main(void){ struct film{char name[20];int id;struct film *pre; //前向指针struct film *next; //后向指针 };struct film *headNULL;struct film *ls,*lspre,*work;in…

rabbitmq集群搭建失败解决

1. 现象 1. 三台机器都已经修改hosts&#xff0c;各个节点ping节点名正常 2. erlang.cookie各节点值一样 执行下面步骤加入失败 rabbitmqctl stop_app # 停止rabbitmq服务 rabbitmqctl reset # 清空节点状态 rabbitmqctl join_cluster rabbitrabbitmq3 rabbitmqctl start_ap…

通过AOP实现项目中业务服务降级功能

最近项目中需要增强系统的可靠性&#xff0c;比如某远程服务宕机或者网络抖动引起服务不可用&#xff0c;需要从本地或者其它地方获取业务数据&#xff0c;保证业务的连续稳定性等等。这里简单记录下业务实现&#xff0c;主要我们项目中调用远程接口失败时&#xff0c;需要从本…

全栈开发之路——前端篇(5)组件间通讯和接口等知识补充

全栈开发一条龙——前端篇 第一篇&#xff1a;框架确定、ide设置与项目创建 第二篇&#xff1a;介绍项目文件意义、组件结构与导入以及setup的引入。 第三篇&#xff1a;setup语法&#xff0c;设置响应式数据。 第四篇&#xff1a;数据绑定、计算属性和watch监视 辅助文档&…

游戏辅助 -- 三种分析角色坐标方法(CE、xdbg、龙龙遍历工具)

所用工具下载地址&#xff1a; https://pan.quark.cn/s/d54e7cdc55e6 在上次课程中&#xff0c;我们成功获取了人物对象的基址&#xff1a;[[[0xd75db8]1C]28]&#xff0c;而人物血量的地址则是基址再加上偏移量278。 接下来&#xff0c;我们需要执行以下步骤来进一步操作&a…

牛客题-链表内区间反转

链表内区间反转 这是代码 typedef struct ListNode listnode; struct ListNode* reverseBetween(struct ListNode* head, int m, int n ) {if (head NULL) {return NULL;}listnode* findhead head;listnode* findtail head;listnode* prev NULL;int count1 m;int count2…

Mysql总结

推荐你阅读 互联网大厂万字专题总结 Redis总结 JUC总结 操作系统总结 JVM总结 Mysql总结 互联网大厂常考知识点 什么是系统调用 CPU底层锁指令有哪些 AQS与ReentrantLock原理 旁路策略缓存一致性 Java通配符看这一篇就够 基础篇 Mysql 的一条语句是如何执行的 Server 层是上层…

C++学习笔记——对仿函数的理解

文章目录 思维导图仿函数出现的逻辑仿函数使用上的巧妙 仿函数的本质仿函数的优势仿函数语法的巧妙 思维导图 仿函数出现的逻辑 我们在学习stack时会遇到一些新的问题&#xff0c;这些问题需要我们使用非类型模板参数去解决&#xff0c;即我们需要在设计类时需要有一个途径去快…

C++反射之检测struct或class是否实现指定函数

目录 1.引言 2.检测结构体或类的静态函数 3.检测结构体或类的成员函数 3.1.方法1 3.2.方法2 1.引言 诸如Java, C#这些语言是设计的时候就有反射支持的。c没有原生的反射支持。并且&#xff0c;c提供给我们的运行时类型信息非常少&#xff0c;只是通过typeinfo提供了有限的…

【练习3】

1.将二叉搜索树转为排序的双向链表 (好久没看数据结构&#xff0c;忘完了&#xff0c;学习大佬的代码&#xff09; class Solution { public:Node* prenullptr,*headnullptr; //pre为每次遍历时的前一个节点&#xff0c;head记录头节点Node* treeToDoublyList(Node* root) {if…