嵌入式学习69-C++(Opencv)

知识零碎:

QT的两种编译模式                                                                                                                               1.debug  调试模式                                                                                                                             2.release  发布模式   OpenCV在此模式下运行

图像是由像素点组成的;

常见图像中的像素点有4种组成方式

(单通道) 位图:                                                                                                                                                对应位的比特只有存在和不存在,亮和暗 两种状态,用01表示      像素深度为1bit

(单通道)灰度图:                                                                                                                                          把亮和暗划分为256个梯度,用一个字节(8bit)表示                   像素深度为8bit
(黑白图像都属于灰度图)                                                                                                                                               

(三通道)RGB图像:                                                                                                                                         3个字节,888                                                                             像素深度为24bit  

(四通道)RGBA图像:                                                                                                                                           A:透明度     显示背景色     0 不透明  255 全透明                  像素深度为32bit

像素的深度 :                                                                                                                                                      用于表达一个像素所需的比特数 

图像二值化                                                                                                                                        将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。      图像的二值化使图像中数据量大为减少,从而能凸显出目标的轮廓

二值化处理

1.先设立阈值,例如127,小于127为白 =0 大于127 为黑 =255

-----------------------------------------------------------------------------------------------------------------------------Mat 是最基本的容器类

Mat的构造函数 Mat mat(10, 10, CV_8UC3, Scalar(0, 0, 0));

三通道时Mat是按照BGR组合的

Mat 其实是一个模板,可以存放不同图像的组成方式

5,6,CV_8UC3

5行 6列  8:每个像素点占8个比特  U:无符号数据  3:每个像素点占用三个通道

BGR 888

256*256*256

人脸检测时,将 RGB图像转化为灰度图像    变为单通道的256 ,减少运算量和cpu的损耗

图像处理的本质:                                                                                                                                                           矩阵运算,是一个二维数组

--------------------------------------------------------------------------------------------------------------------------------                                                          对比度调节

---------------------------------------------------------------------------------------------------------------------------------

  1. 用cvtColor(origion, gray,COLOR_BGR2GRAY  );函数转灰度或其他图像
  2. Mat roi = origion(Rect(10 ,10, 100, 100)); 重载函数调用运算符,获得图像的局部区域
  3. Resize  缩放图像
  4. Flip 翻转图像、

滤波

Blur 中值滤波(模糊算法)

某一点的像素=   周边一圈的像素和的平均值

拿2 举例  周围一圈/9  从而达到模糊的效果

锚点:卷积和的中心

高斯滤波Gaussianblur

Erode  腐蚀(消噪点)                                                                                                                      通常是针对二值图像的, threshold用于转换二值图像(源图必须是灰度图)                                 

cvtColor(mat, dest, COLOR_BGR2GRAY)                                                                           threshold(dest, dest, 127, 255, THRESH_BINARY);                                                                                                                                                                                                                                    腐蚀时:                                                                                                                                                            以卷积核中心点为中心,遍历整个二维数组,卷积核内所有像素都为1时,该点为1,有一个点为0时,该点为0

erode(dest, dest, Mat());                                                                                                                     Mat()卷积核 默认3X3

Dilate  膨胀

Rectangle 绘制矩形

Circle   绘制圆形

Ellipse   绘制椭圆

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/322320.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c 双向链表

图片 #include <stdio.h> #include <stdlib.h> #include <string.h>int main(void){ struct film{char name[20];int id;struct film *pre; //前向指针struct film *next; //后向指针 };struct film *headNULL;struct film *ls,*lspre,*work;in…

rabbitmq集群搭建失败解决

1. 现象 1. 三台机器都已经修改hosts&#xff0c;各个节点ping节点名正常 2. erlang.cookie各节点值一样 执行下面步骤加入失败 rabbitmqctl stop_app # 停止rabbitmq服务 rabbitmqctl reset # 清空节点状态 rabbitmqctl join_cluster rabbitrabbitmq3 rabbitmqctl start_ap…

通过AOP实现项目中业务服务降级功能

最近项目中需要增强系统的可靠性&#xff0c;比如某远程服务宕机或者网络抖动引起服务不可用&#xff0c;需要从本地或者其它地方获取业务数据&#xff0c;保证业务的连续稳定性等等。这里简单记录下业务实现&#xff0c;主要我们项目中调用远程接口失败时&#xff0c;需要从本…

全栈开发之路——前端篇(5)组件间通讯和接口等知识补充

全栈开发一条龙——前端篇 第一篇&#xff1a;框架确定、ide设置与项目创建 第二篇&#xff1a;介绍项目文件意义、组件结构与导入以及setup的引入。 第三篇&#xff1a;setup语法&#xff0c;设置响应式数据。 第四篇&#xff1a;数据绑定、计算属性和watch监视 辅助文档&…

游戏辅助 -- 三种分析角色坐标方法(CE、xdbg、龙龙遍历工具)

所用工具下载地址&#xff1a; https://pan.quark.cn/s/d54e7cdc55e6 在上次课程中&#xff0c;我们成功获取了人物对象的基址&#xff1a;[[[0xd75db8]1C]28]&#xff0c;而人物血量的地址则是基址再加上偏移量278。 接下来&#xff0c;我们需要执行以下步骤来进一步操作&a…

牛客题-链表内区间反转

链表内区间反转 这是代码 typedef struct ListNode listnode; struct ListNode* reverseBetween(struct ListNode* head, int m, int n ) {if (head NULL) {return NULL;}listnode* findhead head;listnode* findtail head;listnode* prev NULL;int count1 m;int count2…

Mysql总结

推荐你阅读 互联网大厂万字专题总结 Redis总结 JUC总结 操作系统总结 JVM总结 Mysql总结 互联网大厂常考知识点 什么是系统调用 CPU底层锁指令有哪些 AQS与ReentrantLock原理 旁路策略缓存一致性 Java通配符看这一篇就够 基础篇 Mysql 的一条语句是如何执行的 Server 层是上层…

C++学习笔记——对仿函数的理解

文章目录 思维导图仿函数出现的逻辑仿函数使用上的巧妙 仿函数的本质仿函数的优势仿函数语法的巧妙 思维导图 仿函数出现的逻辑 我们在学习stack时会遇到一些新的问题&#xff0c;这些问题需要我们使用非类型模板参数去解决&#xff0c;即我们需要在设计类时需要有一个途径去快…

C++反射之检测struct或class是否实现指定函数

目录 1.引言 2.检测结构体或类的静态函数 3.检测结构体或类的成员函数 3.1.方法1 3.2.方法2 1.引言 诸如Java, C#这些语言是设计的时候就有反射支持的。c没有原生的反射支持。并且&#xff0c;c提供给我们的运行时类型信息非常少&#xff0c;只是通过typeinfo提供了有限的…

【练习3】

1.将二叉搜索树转为排序的双向链表 (好久没看数据结构&#xff0c;忘完了&#xff0c;学习大佬的代码&#xff09; class Solution { public:Node* prenullptr,*headnullptr; //pre为每次遍历时的前一个节点&#xff0c;head记录头节点Node* treeToDoublyList(Node* root) {if…

Tomcat 优化

在目前流行的互联网架构中&#xff0c;Tomcat在目前的网络编程中是举足轻重的&#xff0c;由于Tomcat的运行依赖于JVM&#xff0c;从虚拟机的角度把Tomcat的调整分为外部环境调优 JVM 和 Tomcat 自身调优两部分。 一、JVM组成 1. JVM 组成 JVM组成部分 类加载子系统: 使用Ja…

第 8 章 电机测速(自学二刷笔记)

重要参考&#xff1a; 课程链接:https://www.bilibili.com/video/BV1Ci4y1L7ZZ 讲义链接:Introduction Autolabor-ROS机器人入门课程《ROS理论与实践》零基础教程 8.3.3 电机测速01_理论 测速实现是调速实现的前提&#xff0c;本节主要介绍AB相增量式编码器测速原理。 1.概…

JavaScript异步编程——04-同源和跨域

同源和跨域 同源 同源策略是浏览器的一种安全策略&#xff0c;所谓同源是指&#xff0c;域名&#xff0c;协议&#xff0c;端口完全相同。 跨域问题的解决方案 从我自己的网站访问别人网站的内容&#xff0c;就叫跨域。 出于安全性考虑&#xff0c;浏览器不允许ajax跨域获取…

轻量级密码算法可用于哪些应用场景?

轻量级密码算法&#xff0c;以其设计简洁、计算效率高、资源消耗低的特点&#xff0c;成为密码学中一个重要的分支。这些算法特别适用于资源受限的环境&#xff0c;能够在保证安全性的同时&#xff0c;满足对处理能力、存储空间和能耗的限制。 轻量级密码算法特点及应用 近年来…

[C++]哈希应用-布隆过滤器快速入门

布隆过滤器 布隆过滤器&#xff08;Bloom Filter&#xff09;是一个由布隆在1970年提出的概率型数据结构&#xff0c;它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器的主要特点是高效的插入和查询&#xff0c;可以用于检索一个元素是否在一个集合中。 原理…

数据仓库实验三:分类规则挖掘实验

目录 一、实验目的二、实验内容和要求三、实验步骤1、创建数据库和表2、决策树分类规则挖掘&#xff08;1&#xff09;新建一个 Analysis Services 项目 jueceshu&#xff08;2&#xff09;建立数据源视图&#xff08;3&#xff09;建立挖掘结构 DST.dmm&#xff08;4&#xff…

PPP点对点协议

概述 Point-to-Point Protocol&#xff0c;点到点协议&#xff0c;工作于数据链路层&#xff0c;在链路层上传输网络层协议前验证链路的对端&#xff0c;主要用于在全双工的同异步链路上进行点到点的数据传输。 PPP主要是用来通过拨号或专线方式在两个网络节点之间建立连接、…

【智能楼宇秘籍】一网关多协议无缝对接BACnet+OPC+MQTT

在繁华的都市中心&#xff0c;一座崭新的大型商业综合体拔地而起&#xff0c;集购物、餐饮、娱乐、办公于一体&#xff0c;是现代城市生活的缩影。然而&#xff0c;这座综合体的幕后英雄——一套高度集成的楼宇自动化系统&#xff0c;正是依靠多功能协议网关&#xff0c;实现了…

事业单位向媒体投稿发文章上级领导交给了我投稿方法

作为一名事业单位的普通职员,负责信息宣传工作,我见证了从传统投稿方式到智能化转型的全过程,这段旅程既是一次挑战,也是一次宝贵的成长。回想起初涉此领域的日子,那些通过邮箱投稿的时光,至今仍然历历在目,其中的酸甜苦辣,构成了我职业生涯中一段难忘的经历。 邮箱投稿:费时费…

添砖Java之路其二——基本数据类型,scanner,字符拼接。

目录 基本数据类型&#xff1a; ​编辑 Scanner: 字符拼接&#xff1a; 课后小题&#xff1a; 基本数据类型&#xff1a; 如图可见&#xff1a;Java里面有八种基本数据类型。 注意&#xff1a;在其中我们需要注意的是int默认整型数据&#xff0c;double是默认浮点型数据。因…