Linux的基础IO:文件描述符 重定向本质

目录

前言

文件操作的系统调用接口

open函数

close函数

write函数

read函数 

注意事项

文件描述符-fd

小补充 

重定向

文件描述符的分配原则

系统调用接口-dup2

缓冲区

缓冲区的刷新策略

对于“2”的理解

小补充 


前言

        在Linux中一切皆文件,打开文件的本质是进程打开了文件,文件没有被打开时一直存放在磁盘中(进程执行时才会打开文件,文件才会从磁盘中拿出),而OS中存在很多进程,即系统中一定存在大量被进程打开的文件,对此OS会采取“先描述再组织”的原则,每个被打开的文件在OS内部都有一个类似PCB的描述文件属性的结构体。

文件 = 属性 + 内容

以w方式打开文件:

  • 文件不存在,则在当前路径下新建指定文件并写入
  • 文件存在,打开文件时会将该文件清空并写入

以a方式打开文件:

  • 文件不存在,则在当前路径下新建指定文件并写入
  • 文件存在,追加写入

>和>>:

  • > 文件 等同于 w 一个文件

  • >> 文件 等同于 a 一个文件

结论:输出重定向一定是文件操作

文件操作的系统调用接口

基本概念:文件在进程未执行时一直放在磁盘中,磁盘是硬件,向文件中写入本质就是向硬件中写入,但是用户没有权利直接向硬件中写入,需要由OS提供访问硬件的系统调用接口,而C/C++等编程语言中提供的对文件的操作接口就是对系统调用的接口的封装

open函数

函数原型: 

  • int open(const char *pathname, int flags);
  • int open(const char *pathname, int flags, mode_t mode);

包含头文件:

  • <sys/types.h>
  • <sys/stat.h>
  • <fcntl.h>

参数:

  • const char *pathname:要打开的文件绝对或相对路径
  • flags:位掩码,指定了打开方式和访问权限等信息
  • mode:指定新建文档的权限设置

flags的常见取值:

  • O_RDONLY:以只读模式打开
  • O_WRONLY:以只写模式打开
  • O_RDWR:以读写模式打开
  • O_CREAT:如若目标文档不存在则创建
  • O_TRUNC:如若目标文档存在则清空
  • O_APPEND:追加写入

返回值:操作文件成功时返回int类型的文件描述符,失败时返回 -1

功能:打开文件的系统调用函数

close函数

函数原型:int close(int fd);

包含头文件: <unistd.h>

参数:要关闭的目标文件描述符或套接字

返回值:关闭成功时返回 0,失败时返回 -1 

功能:关闭指定文件描述符或套接字,并释放与之相关联的资源

write函数

函数原型:ssize_t write(int fd, const void *buf, size_t count);

包含头文件: <unistd.h>

参数:待写入的目标文件描述符或套接字,待写入数据的缓冲区指针,待写入的字节数

返回值:写文件成功时返回实际写入到目标文件中的字节数,失败时返回 -1

功能:将buf指向的内容写入到目标文件描述符或套接字所对应对象中

read函数 

函数原型:ssize_t write(int fd, const void *buf, size_t count);

包含头文件: <unistd.h>

参数:待写入的目标文件描述符或套接字,待写入数据的缓冲区指针,待写入的字节数

返回值:写文件成功时返回实际写入到目标文件中的字节数,失败时返回 -1

功能:将buf指向的内容写入到目标文件描述符或套接字所对应对象中

        stat、fastat、lasta是三个修改文件属性的调用接口,上面的read、write等是对文件内容修改的调用接口

注意事项

1、文件的权限掩码的采用就近原则,默认为0002,uamsk(0)设置为0后就为0

2、O_RDONLY等位掩码都是类似于下列形式的宏定义(了解)

3、位掩码不同的组合有不同的效果

  • O_WRONLY | O_CREAT | O_TRUNC:实现fopen函数w打开文件时的效果
  • O_WRONLY | O_CREAT | O_APPEND:实现fopen函数a打开文件时的效果
  • O_WRONLY | O_CREAT:实现fopen函数wa打开文件时的效果

文件描述符-fd

问题一:open函数的返回值是文件描述符,我们创建四个文件并打印它们的文件描述符发现它们分别是3、4、5、6,怎么没有见0、1、2?

原因:C语言在运行时会默认打开三个流,而0、1、2就分别是标准输入流stdin(键盘)、标准输出流stdout(显示器)、标准错误流stderr(显示器)

问题二:为什么可以向1中写?fd的本质是什么 

结论:文件描述符的本质是内核的进程的文件映射关系数组的下标

        struct file处理的是用户与操作系统间的关系,而文件系统中的struct inode处理的是操作系统与硬件设备之间的关系,OS可以依据struct file中存放的信息找到struct file对应的struct inode

小补充 

       程序的本质确实是对数据进行处理,并且这些处理过程和结果需要与人类用户进行交互。在Unix/Linux系统中,0、1、2三个文件描述符分别代表标准输入、标准输出和标准错误输出。它们被默认打开并与终端设备关联,以便程序可以通过它们与用户进行交互

问题三:read和write函数如何进行读写文件?

解释:read时将文件存放在内核级缓存中的数据拷贝至上层,如果内核级缓存中没有文件的数据,就将要read的进程挂在磁盘的等待队列中,等待磁盘将相应的文件的数据放入内核级缓存后再唤醒该进程并进行拷贝,write时也是针对文件内核级缓冲区中的数据进行修改,修改后再刷新至磁盘中,因而无论读写都要在合适的时候,让OS将文件的数据读取到文件内核级缓冲区中,读写的对象都是文件内核级缓冲区中的数据,而不是磁盘级的文件数据

问题四:open函数在干什么?

解释:

  1. 创建文件
  2. 开辟内核级文件缓冲区的空间,加载文件数据(有延后性)
  3. 查看进程的文件描述符表(struct file_struct)
  4. 获取文件地址,并填入文件描述符表中
  5. 返回该文件在文件描述符表中的下标

问题五:为什么0、1、2在程序启动时默认打开?它们对应不应该是硬件吗?

补充: 硬件设备也有的struct_file,但是它们的struct_file中除了有硬件设备相关的属性外,还都包含一张指向底层操作方法(对硬件设备的操作接口)的函数指针表(每张表都一样),该表中的函数指针指向的是由硬件生产厂商的开发人员在驱动层已经写好的硬件调用接口,并且一个函数指针可以指向多个不同的硬件操作接口从而产生不同的结果(多态,write函数指针可以指向键盘、鼠标等硬件的write接口,这一功能由厂商实现的)

解释:因为在进程执行时就会将三个硬件的struct_file的地址信息放入进程struct files_struct中,数组下标0、1、2就是它们的文件标识符,而它们的struct_file中又有指向底层操作方法的函数指针,在进程尝试使用硬件设备时会通过它们的文件标识符访问到它们的struct_file进而访问到驱动层的k_read()等硬件设备操作接口

注意事项:普通文件类型的 struct file 中并不包含指向底层设备接口的函数指针表

        struct_file中的文件属性就是类中的数据,操作底层方法的指针表中的函数指针就是类中的方法,所以struct_file也可以视为C语言实现的类,多个struct_file构成了OS中的virtual file system

问题六:如何理解C语言通过FILE* 访问文件?

解释:FILE是一个由文件描述符等内容封装成的结构体,C语言中所有文件操作函数,都是对系统调用接口的封装,fopen函数是对调用接口open的封装,该函数隐式返回了文件描述符给FILE结构体,而fwrite、fread等又是对write、read调用接口的封装,fwrite等可以通过FILE中的fd访问文件

好文章:文件操作的底层原理(文件描述符与缓冲区) - 知乎 (zhihu.com)  

重定向

文件描述符的分配原则

基本概念:查自己的文件描述表,分配最小的没有被使用的fd

尝试为一个普通文件分配fd = 1,并调用printf和fprintf函数向显示器上打印内容:

现象: 本来应该打印到显示器上的内容,却打印到了一个指定的文件中,这种技术叫重定向

结论:重定向的本质就是在内核中改变文件描述符表特定下标的内容,与上层无关,重定向也可以视为对open和dup2接口的封装:

int fd = open("output.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);
dup2(fd, STDOUT_FILENO); //原 > 目标

如果想要实现追加重定向>>,那么就只需更改open函数的参数:

int fd = open("output.txt", O_WRONLY | O_CREAT | O_APPEND, 0644);
dup2(fd, STDOUT_FILENO); //原 > 目标

接着尝试注释fflush,注释fflush和close、注释close:

解释:stdin、stdout、stderr的struct_file中除了有_fileno还有语言级别的文件缓冲区,printf和fprintf函数会先将要打印的内容放入stdoutd的struct_file中的文件缓冲区中,由fflush(stdout)指令将该缓冲区中的数据刷新至log.txt的内核文件缓冲区中(因为此时fd = 1指向的是log.txt),最后由OS定期将log.txt内核级文件缓冲区中的数据刷新至磁盘中:注释fflush就会导致stdout的struct_file中的文件缓冲区数据无法刷新至内核级的文件缓冲区并且文件描述符还被关闭了即使在最后操作系统想要帮助刷新也不可能了(如果你没有显式地刷新 stdout 缓存或关闭该进程所占据的资源,则操作系统可能会自动地执行这些操作以确保程序正常结束并释放相关资源,跟\n没关系,即使你这里将\n去除也不会刷新缓冲区只有stdout与显示器关联时才能刷新,\n在这里只有换行作用,本质是行刷新和全缓冲刷新的不同,刷新策略中有解释)

结论:fflush(stdout)是为了将stdout的语言级文件缓冲区中的内容刷新至内核级文件缓冲区中

系统调用接口-dup2

函数原型:int dup2(int oldfd,int newfd);

包含头文件:<unistd.h>

参数:源文件描述符,目标文件描述符

返回值:成功返回目标文件描述符,失败返回-1

功能:使得目标文件描述符共享源文件描述符所对应的 数据

缓冲区

基本概念:缓冲区分为用户级(语言级)缓冲区和内核级缓冲区,是一段内存空间

优点:缓冲区的分级有利于解耦、提高使用者的效率、提高刷新IO效率

问题:为什么C语言可以通过调用接口直接向内核级缓冲区写数据,还要提供对调用接口重新封装后的接口并先将数据写到语言级缓冲区呢?

解释:调用系统接口是有成本的,多次频繁的使用write等系统调用接口向内核级缓冲区中写一些很少的数据会造成资源浪费,而使用了封装后的fwrite接口就可以先将这些内容放入语言级缓冲区中,放入之后就可以结束fwrite进行下一步操作等语言级的缓冲区中的数据达到一定程度时仅调用一次系统调用接口,就可以将多次写入的少量数据一次性的放入内核级缓冲区中并且写入后向磁盘刷新的操作也有OS自行完成不需要用户管,这样就即提高了使用者的效率(把快递交给快递员而不是亲自去送,交给后就不用管了可以去干其它内容),又提高了刷新IO的效率(将一段时间内的所有接收到的快递装车一块去配送,而不是接受一件配送一件,并且应该由专门的快递配送员配送,相比于寄件人他们知道配送的流程,寄件人了乐于有人帮自己干活)

缓冲区的刷新策略

对于用户 / 内核级的缓冲区都适用,但是这里我们只关心用户级的

立即刷新(近似于无缓冲)

1、用户级接口:fflush(stdout)强制刷新用户级的缓冲区至内核级缓冲区

2、内核级接口:int fsync(int fd)强制刷新内核级的缓冲区至磁盘

行刷新

显示器的行刷新是为了便于用户观看数据

全缓冲

缓冲区写满才刷新,一般是普通文件(此时\n只起到换行作用)

特殊情况

1、进程退出,系统会自动刷新

2、强制刷新

注意事项:

1、不同平台的刷新策略不同

2、子进程不会继承父进程在用户级缓冲区中刷新过的内容

关于完善shell中重定向的内容在22的2:30处,一小时左右

对于“2”的理解

基本概念:1和2中的内容都是显示器文件的struct file

问题一:为什么要有2?

解释:分离程序中出现的正确和错误的消息,正确的信息向1中打,错误的信息向2中打,再通过重定向建立存放正确和错误信息的两个文件

问题二:>是标准输出重定向,只会更改1号fd中的内容,如何将2和1定向至同一文件中?

解释:. / a.out 1>all.log 2>&1,先将1获取到的正确内容放入all.log文件中,然后将2获取到的错误的内容放入1放入的文件中(由取地址&实现)

小补充 

perror函数本质上是向2中打印,printf本质上是向1中打印的:

~over~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/323068.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

libcity笔记:参数设置与参数优先级

1 参数优先级 高优先级的参数会覆盖低优先级的同名参数 Libcity中的优先级顺序维&#xff1a; 命令行参数&#xff08;命令行python run_model.py时导入的&#xff09; > 用户定义配置文件&#xff08;命令行python run_model.py时由config_file导入的&#xff09; >…

Windows下,基于Gradle用Docker发布自己的程序

方案1&#xff1a; windows下打包程序&#xff0c;然后&#xff0c;上传到linux下&#xff0c;生成docker镜像&#xff0c;然后执行。 首先&#xff1a; 由于是采用Gradle管理的项目&#xff0c;打包的时候需要执行build任务。执行完成后&#xff0c;再build\libs目录下应该…

机器学习:基于TF-IDF算法、决策树,使用NLTK库对亚马逊美食评论进行情绪分析

前言 系列专栏&#xff1a;机器学习&#xff1a;高级应用与实践【项目实战100】【2024】✨︎ 在本专栏中不仅包含一些适合初学者的最新机器学习项目&#xff0c;每个项目都处理一组不同的问题&#xff0c;包括监督和无监督学习、分类、回归和聚类&#xff0c;而且涉及创建深度学…

js原生手写一个拖拽小功能

先上效果图 附上代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta http-equiv"X-UA-Compatible" content"IEedge" /><meta name"viewport" content"widthd…

【强训笔记】day16

NO.1 代码实现&#xff1a; class StringFormat { public:string formatString(string A, int n, vector<char> arg, int m) {string ret;int j0;for(int i0;i<n;i){if(A[i]%){if(i1<n&&A[i1]s){retarg[j];i;}else {retA[i];}}else {retA[i];}}while(j&l…

PyQt5中重要的概念:信号与槽

PyQt中信号与槽概念定义如下&#xff08;网络上引用的&#xff09;&#xff1a; 信号&#xff08;signal&#xff09;和槽&#xff08;slot&#xff09;是Qt的核心机制&#xff0c;也是在PyQt编程中对象之间进行通信的机制。在创建事件循环之后&#xff0c;通过建立信号和槽的…

我们的小程序每天早上都白屏,真相是。。。

大家好&#xff0c;我是程序员鱼皮。最近我们在内测一款面试刷题小程序&#xff0c;没错&#xff0c;就是之前倒下的 “面试鸭”&#xff01; 在我们的内测交流群中&#xff0c;每天早上都会有同学反馈&#xff1a;打开小程序空白&#xff0c;没任何内容且登录不上。 然后过了…

Day3 | Java基础 | 4常见类

Day3 | Java基础 | 4 常见类 基础版Object类equalshashCode&#xff08;散列码&#xff09;hashCode和equals clone方法String类 问题回答版Object类Object类的常见方法有哪些&#xff1f;和equals()的区别是什么&#xff1f;为什么要有hashCode&#xff1f;hashCode和equals的…

chrome extension插件替换网络请求中的useragent

感觉Chrome商店中的插件不能很好的实现自己想要的效果,那么就来自己动手吧。 本文以百度为例: 一般来说网页请求如下: 当前使用的useragent是User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safar…

解决WordPress无法强制转换https问题

原因&#xff1a;我在用cs的时候&#xff0c;突然老鸟校园网突然断了&#xff0c;客户端cs连不上了&#xff0c;进程也杀不死&#xff0c;cpu占用100%&#xff0c;只能重启&#xff0c;但是重启后我的blog网站打不开了 开始以为是Nginx的问题&#xff0c;重启它说配置出了问题…

[iOS]从拾遗到Runtime(上)

[iOS]从拾遗到Runtime(上) 文章目录 [iOS]从拾遗到Runtime(上)写在前面名词介绍instance 实例对象class 类对象meta-class 元类对象为什么要有元类&#xff1f; runtimeMethod(objc_method)SEL(objc_selector)IMP 类缓存(objc_cache)Category(objc_category) 消息传递消息传递的…

C语言【文件操作 2】

文章目录 前言顺序读写函数的介绍fputc && fgetcfputcfgetc fputs && fgetsfputsfgets fprintf && fscanffprintffscanf fwrite && freadfwritefread 文件的随机读写fseek函数偏移量ftell函数rewind函数 文件的结束判断被错误使用的feof 结语 …

【2024版】最新6款漏洞扫描工具来了!(附下载)看完这一篇就够了

目录 一、Nessus 二、AWVS 三、ZAP 四、w3af 五、北极熊 六、御剑 七、网络安全学习路线 &#xff08;2024最新整理&#xff09; 八、学习资料的推荐 1.视频教程 2.SRC技术文档&PDF书籍 3.大厂面试题 特别声明&#xff1a; 渗透测试收集信息完成后&#xf…

《ESP8266通信指南》11-Lua开发环境配置

往期 《ESP8266通信指南》10-MQTT通信&#xff08;Arduino开发&#xff09;-CSDN博客 《ESP8266通信指南》9-TCP通信&#xff08;Arudino开发&#xff09;-CSDN博客 《ESP8266通信指南》8-连接WIFI&#xff08;Arduino开发&#xff09;&#xff08;非常简单&#xff09;-CSD…

AI换脸原理(3)——人脸对齐介绍

人脸对齐简介 人脸对齐其实包含两个步骤:人脸关键点检测、人脸对齐,英文术语有facial landmark和face alignment,主要用于精确标识眉毛、眼睛、鼻子、嘴巴以及人脸轮廓等特征部位。不同数据集对于关键点的数量有不同的设定,最少的是标记5个关键点,通常包括两只眼睛的瞳孔…

【driver5】调用堆栈函数,printk,动态打印,ftrace,proc,sysfs

文章目录 1.内核函数调用堆栈&#xff1a;4个函数2.printk&#xff1a;cat /proc/cmdline查看consolettyS03.动态打印&#xff1a;printk是全局的且只能设打印等级&#xff0c;动态打印可控制选择模块的打印&#xff0c;在内核配置打开CONFIG_DYNAMIC_DEBUG4.top&perf&…

mac 本地使用docker 运行es,kibana

1.下载 m芯片一些版本不支持.踩过坑.翻看官网才知道只有部分镜像支持m芯片 https://hub.docker.com/添加链接描述 docker pull elasticsearch:7.17.21 docker pull kibana:7.17.21镜像已经下载下来了 2.创建文件映射-挂载 /Users/lin/dev/dockerMsg 其中lin是自己的用户名…

2024年软件测试最全jmeter做接口压力测试_jmeter接口性能测试_jmeter压测接口(3),【大牛疯狂教学

既有适合小白学习的零基础资料&#xff0c;也有适合3年以上经验的小伙伴深入学习提升的进阶课程&#xff0c;涵盖了95%以上软件测试知识点&#xff0c;真正体系化&#xff01; 由于文件比较多&#xff0c;这里只是将部分目录截图出来&#xff0c;全套包含大厂面经、学习笔记、…

JavaWeb_请求响应_简单参数实体参数

一、SpringBoot方式接收携带简单参数的请求 简单参数&#xff1a;参数名与形参变量名相同&#xff0c;定义形参即可接收参数。并且在接收过程中&#xff0c;会进行自动的类型转换。 启动应用程序后&#xff0c;在postman中进行测试&#xff1a; 请求成功&#xff0c;响应回了O…

【Ping】Windows 网络延迟测试 ping 、telnet、tcping 工具

ping 命令 属于网络层的ICMP协议&#xff0c;只能检查 IP 的连通性或网络连接速度&#xff0c; 无法检测IP的端口状态。 telnet telnet命令&#xff0c;属于应用层的协议&#xff0c;用于远程登录&#xff0c;也可用于检测IP的端口状态。但是功能有限&#xff0c;只能检测一时…