GraphGPT——图结构数据的新语言模型

在人工智能的浪潮中,图神经网络(GNNs)已经成为理解和分析图结构数据的强大工具。然而,GNNs在面对未标记数据时,其泛化能力往往受限。为了突破这一局限,研究者们提出了GraphGPT,这是一种为大语言模型(LLMs)量身定制的图结构知识融合框架。本文将探讨GraphGPT如何革新我们处理图数据的方式。

什么是GraphGPT?

GraphGPT是一种新型框架,它通过图指令调整(Graph Instruction Tuning)来提升大语言模型对图结构数据的理解力和泛化能力。这一框架特别适合于零样本学习场景,即在没有下游任务标签的情况下进行预训练和微调。

GraphGPT的核心优势在于其创新的框架设计,该设计专门针对图结构数据的理解与处理进行了优化。以下是GraphGPT几个关键优势的详细介绍:

1. 图结构编码与文本-图基础范式(Text-Graph Grounding)

GraphGPT通过一种称为文本-图基础范式的方法,实现了图结构信息与自然语言空间的有效对齐。这一范式允许模型生成保留图结构上下文的提示(prompts),从而使得大语言模型(LLMs)能够利用其固有的语言理解能力来解释图的语义信息。这种方法作为桥梁,连接了图的语义理解和图内的结构关系。

2. 双阶段图指令调整(Dual-Stage Graph Instruction Tuning)

GraphGPT采用了一个双阶段的指令调整过程,该过程包含自监督指令调整和任务特定指令调整两个部分:

  • 自监督指令调整:在第一阶段,GraphGPT使用来自未标记图结构的自监督信号作为指令,以增强模型对图结构域特定知识的理解。通过设计结构感知的图匹配任务,模型能够区分不同的图标记,并将这些标记与其相应的文本描述准确关联。
  • 任务特定指令调整:在第二阶段,模型通过使用特定于任务的图指令进行微调,以定制化模型的推理行为,满足不同图学习任务的特定约束和要求。

3. 链式思考(Chain-of-Thought, CoT)蒸馏

为了应对多样化的图数据和分布偏移问题,GraphGPT引入了链式思考技术,以增强模型的逐步推理能力。CoT技术通过明确模拟思考过程和推理步骤,提高了模型生成文本的连贯性和一致性。此外,通过从封闭源的强大语言模型(如ChatGPT)中提取有价值的知识,GraphGPT能够在不增加参数规模的情况下,提高模型的CoT推理能力。

实验与评估

实验使用了三个主要数据集:OGB-arxiv、PubMed 和 Cora,这些数据集覆盖了计算机科学论文引用网络、糖尿病相关科学出版物以及更广泛的研究论文。为了确保实验的兼容性和可比性,研究者们采用预训练的 BERT 模型对节点特征进行编码,并将数据集按照一定的比例划分为训练集、验证集和测试集。

在监督学习设置中,GraphGPT 在特定数据集上训练,并在相同数据集的测试集上评估性能。而在零样本学习设置中,GraphGPT 接受一个数据集的训练后,直接在完全不同的数据集上进行测试,无需额外训练。这种设置模拟了现实世界中标签数据稀缺的情况。

评估指标包括节点分类任务的准确率和宏平均 F1 分数,以及链接预测任务的 AUC(Area Under the Curve)。与多个现有的先进方法相比,包括传统的机器学习方法、图神经网络架构、自监督学习方法、知识蒸馏方法和最新的图变换网络,GraphGPT 在多个任务上均展现出了优越的性能。

此外,研究者们还进行了模块消融研究,以评估 GraphGPT 中不同组件的贡献。结果表明,图指令调整和链式思考蒸馏对于提升模型性能至关重要。模型效率研究也表明,GraphGPT 在训练和推理阶段都具有较高的效率,这得益于其创新的图-文本对齐投影器和双阶段指令调整策略。

最终,通过模型案例研究,研究者们展示了 GraphGPT 如何在实际的图学习任务中,如节点分类和链接预测,提供准确的预测和合理的解释。这些实验结果不仅证明了 GraphGPT 在图学习任务中的有效性,也展示了其在零样本学习场景中的泛化能力。通过这些实验,研究者们成功地展示了 GraphGPT 作为一个强大的图学习框架的潜力。

实验结果证明了 GraphGPT 框架在图学习任务中的优越性能,特别是在缺乏标记数据的零样本学习场景下。此外,通过 CoT 蒸馏,GraphGPT 展现出了强大的逐步推理能力,能够更好地理解和推理图结构数据。

论文链接:https://arxiv.org/pdf/2310.13023

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/323237.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AcWing 161:电话列表 ← 字典树(Trie 树)之前缀匹配

【题目来源】https://www.acwing.com/problem/content/163/【题目描述】 给出一个电话列表,如果列表中存在其中一个号码是另一个号码的前缀这一情况,那么就称这个电话列表是不兼容的。 假设电话列表如下:Emergency 911 Alice 97625999 Bob …

2022 亚马逊云科技中国峰会,对话开发者论坛

目录 前言 最近整理资料发现还有一些前 2 年的内容没发出来,故补发记录,每年都有新的感悟。 开发者论坛 1. 你认为什么是开发者社区,如何定义一个成功的开发者社区? 我认为可以把开发者社区看成一个 “产品” 来对待&#xff…

ESP8266-01s刷入固件报SP8266 Chip efuse check error esp_check_mac_and_efuse

一、遇到的问题 使用ESP8266 固件烧录工具flash_download_tools_v3.6.8 烧录固件报错: 二、解决方法 使用espressif推出发基于python的底层烧写工具:esptool 安装方法:详见https://docs.espressif.com/projects/esptool/en/latest/esp32/ …

电脑中的两个固态硬盘比一个好,想知道为什么吗

你当前的电脑很有可能有一个NVME SSD作为主驱动器,但可能至少还有一个插槽可以放另一个SSD,而且这样做可能是个好主意。 两个SSD可以提高性能 如果你有两个固态硬盘,你可以从中获得比有一个更好的性能。一种方法是使用RAID 0将两个驱动器组…

《ESP8266通信指南》14-连接WIFI(基于Lua)

往期 《ESP8266通信指南》13-Lua 简单入门(打印数据)-CSDN博客 《ESP8266通信指南》12-Lua 固件烧录-CSDN博客 《ESP8266通信指南》11-Lua开发环境配置-CSDN博客 《ESP8266通信指南》10-MQTT通信(Arduino开发)-CSDN博客 《ES…

eNSP-浮动静态路由配置

ip route-static 192.168.1.0 24 192.168.3.2 preference 60 #设置路由 目标网络地址 和 下一跳地址 preference值越大 优先级越低 一、搭建拓扑结构 二、主机配置 pc1 pc2 三、配置路由器 1.AR1路由器配置 <Huawei>sys #进入系统视图 [Huawei]int g0/0/0 #进入接…

喜报|知从科技荣获“2023年度浦东新区创新创业奖”

4月11日&#xff0c;由上海市浦东新区人民政府举办的“2024年浦东新区经济突出贡献企业表彰活动”在上海国际会议中心隆重举行。知从科技凭借过去一年在行业内卓越的技术创新实力及对浦东新区发展作出的杰出贡献&#xff0c;入选创新创业20强企业&#xff0c;荣获“2023年度浦东…

C++类和对象(4)

目录 1.初始化列表 2.单参数里面的隐式类型转换 3.多参数的隐式类型转换 4.匿名对象 1.初始化列表 &#xff08;1&#xff09;首先看一下初始化列表具体是什么&#xff1f; 这个就是初始化列表的具体形式&#xff0c;对&#xff0c;你没有看错&#xff0c;这个初始化列表里…

Hotcoin Research | 模块化将是大势所趋:拆解模块化区块链的现状和未来

关于模块化区块链叙事的讨论源于Celestia和其代币TIA的亮眼表现。实际上&#xff0c;模块化是未来区块链设计的主要发展方向和大势所趋。模块化区块链就像乐高积木一样&#xff0c;将区块链系统拆分为可重用的模块&#xff0c;通过定制组合可实现不同功能的区块链网络。这种灵活…

锂电池恒流恒压CCCV充电模型MATLAB仿真

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; CCCV简介 CCCV充电过程是恒流充电&#xff08;CC&#xff09;和恒压充电&#xff08;CV&#xff09;的结合。在CC阶段对电池施加恒定电流&#xff0c;以获得更快的充电速度&#xff0c;此时电池电压持续升高…

C++基础——输入输出(文件)

一、标准输入输出流 C 的输入输出是程序与用户或外部设备&#xff08;如文件、网络等&#xff09;之间交换信息的过程。 C 提供了丰富的标准库来支持这种交互&#xff0c;主要通过流的概念来实现。 流&#xff1a;抽象概念&#xff0c;表示一连串的数据&#xff08;字节或字…

C++语言·string类

1. 为什么有string类 C语言中&#xff0c;字符串是以\0结尾的一些字符的集合&#xff0c;为了操作方便&#xff0c;C标准库中提供了一些str系列的库函数(strcpy,strcat)&#xff0c;但是这些库函数与字符串是分离开的&#xff0c;不太符合OOP(Object Oriented Programming面向对…

Java 语法 (杂七杂八的知识)

面向对象三大特性 封装, 多态, 继承 基本数据类型 一字节 (Byte) 占八位 (bit) JDK, JRE, JVM JDK (Java Development Kit) : Java 开发工具包, 包括了 JRE, 编译器 javac, 和调试工具 Jconsole, jstack 等 JRE (Java Runtime Environment) : Java 运行时环境, 包括了 JVM , …

【牛客】Tokitsukaze and Average of Substring

原题链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 前缀和。 开一个int类型的前缀和数组pre[30][N]&#xff08;pre[i][j]表示某字符转成的数字 i 在一段区间的前缀个数。因为字母表有‘a’~z…

【使用ChatGPT的API之前】OpenAI API提供的可用模型

文章目录 一. ChatGPT基本概念二. OpenAI API提供的可用模型1. InstructGPT2. ChatGPT3. GPT-4 三. 在OpenAI Playground中使用GPT模型-ing 在使用GPT-4和ChatGPT的API集成到Python应用程序之前&#xff0c;我们先了解ChatGPT的基本概念&#xff0c;与OpenAI API提供的可用模型…

云原生Kubernetes: K8S 1.29版本 部署Harbor

目录 一、实验 1.环境 2.Linux 部署docker compose 3.证书秘钥配置 4.K8S 1.29版本 部署Harbor 5.K8S 1.29版本 使用Harbor 二、问题 1.docker 登录harbor失败 一、实验 1.环境 &#xff08;1&#xff09;主机 表1 主机 主机架构版本IP备注masterK8S master节点1.2…

java报错:使用mybatis plus查询一个只返回一条数据的sql,却报错返回了1000多条

今天遇到一个问题 系统线上问题&#xff0c;经常出现这样的问题&#xff0c;刚重启系统时不报错了&#xff0c;可是运行一段时间又会出现。sql已经写了limit 1&#xff0c;mybatis的debug日志也返回total为1&#xff0c;可是却报错返回了1805条数据 乍一看&#xff0c;感觉太不…

基于Spring Boot的公司OA系统设计与实现

基于Spring Boot的银行OA系统设计与实现 开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 数据库工具&#xff1a;Navicat11 开发软件&#xff1a;eclipse/myeclipse/idea 系统部分展示 用户登录界面&#xff0c;在银行OA系统运行后&#x…

基于springboot+jsp+Mysql的商务安全邮箱邮件收发

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;…

STM32单片机实战开发笔记-PWM波输出频率及占空比配置【wulianjishu666】

单片机物联网开发资料&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1XzodQuML7CqZ4ZKinDGKkg?pwdbgep 提取码&#xff1a;bgep PWM模块测试 功能描述 脉冲宽度调制模式&#xff1a; PWM边沿对齐模式&#xff1a; 向上计数配置 当TIMX_CR1寄存器中的DIR为低的时…