(粗糙的笔记)动态规划

动态规划算法框架:

  1. 问题结构分析
  2. 递推关系建立
  3. 自底向上计算
  4. 最优方案追踪

背包问题

输入:

  • n n n个商品组成的集合 O O O,每个商品有两个属性 v i v_i vi p i p_i pi,分别表示体积和价格
  • 背包容量 C C C

输出:

  • 求解一个商品子集 S ⊆ O S\subseteq O SO

直观策略

  • 策略1:按商品价格由高到低排序,优先挑选价格高的商品
  • 策略2:按商品体积由小到大排序,优先挑选体积小的商品
  • 策略3:按商品价值与体积的比由高到低排序,优先挑选比值高的商品

这三种策略都不能保证得到最优解

蛮力枚举

  1. 枚举所有商品组合: 2 n − 1 2^n-1 2n1种情况
  2. 检查体积约束

递归函数KnapsackSR(h,i,c)

  • 在第 h h h个到第 i i i个商品中,容量为 c c c时最优解
  • 选择啤酒: K n a p s a c k S R ( 1 , 4 , 3 ) + 24 KnapsackSR(1,4,3)+24 KnapsackSR(1,4,3)+24
  • 不选啤酒: K n a p s a c k S R ( 1 , 4 , 13 ) KnapsackSR(1,4,13) KnapsackSR(1,4,13)

伪代码:

输入:商品集合{h,...,i},背包容量c
输出:最大总价格P
if c<0 then
| return 0
end
if i <= h-1 then
| return 0
end
P1 <- KnapsackSR(h,i-1,c-vi)
P2 <- KnapsackSR(h,i-1,c)
P <- max(P1+pi,P2)
return P

重复求解大量子问题: O ( 2 n ) O(2^n) O(2n)

动态规划

从蛮力枚举到带备忘递归

  • 优化子问题解,避免重复计算

构造备忘录P[i,c]P[i,c]表示在前i个商品中选择,背包容量为c时的最优解

输入:商品集合{h,...,i},背包容量c
输出:最大总价格P
if c<0 then
| return 0
end
if i <= h-1 then
| return 0
end
if P[i,c]!=NULL then
| return P[i,c]
end
P1 <- KnapsackMR(h,i-1,c-vi)
P2 <- KnapsackMR(h,i-1,c)
P[i,c] <- max(P1+pi,P2)
return P[i,c]

递推求解

容量为0时: P [ i , 0 ] = 0 P[i,0]=0 P[i,0]=0
没有商品时: P [ 0 , c ] = 0 P[0,c]=0 P[0,c]=0
image.png
确定计算顺序:

  • 按从左往右、从上到下的顺序计算

问题:如何确定选取了哪些商品

  • 记录决策过程:KaTeX parse error: {align} can be used only in display mode.

回溯解决方案:

  • 倒序判断是否选择商品
  • 根据选择结果,确定最优子问题

伪代码:

输入:商品集合{h,...,i},背包容量c
输出:最大总价格P
//初始化,创建二维数组P和Rec
for i <- 0 to C do
| P[0,i] <- 0
end
for i <- 0 to n do
| P[i,0] <- 0
end
//求解表格
for i <- 1 to n do
| for c <- 1 to C do
|  | if v[i]<=c and p[i]+P[i-1,c-v[i]]>P[i-1,c] then
|  | | P[i,c]=p[i]+P[i-1,c-v[i]]
|  | | Rec[i,c] <- 1
|  | end
|  | else
|  | | P[i,c] <- P[i-1,c]
|  | | Rec[i,c] <- 0
|  | end
| end
end

时间复杂度: O ( n ⋅ C ) O(n\cdot C) O(nC)
上面带备忘递归和递推求解的方法都属于动态规划:

  • 带备忘递归:自顶向下
  • 递推求解:自底向上

最优子结构性质:

  • 问题的最优解由相关子问题最优解组合而成
  • 子问题可以独立求解

动态规划与分而治之的区别:

  • 动态规划:重叠子问题
  • 分而治之:独立子问题

最大子数组

问题结构分析:

  • 给出问题表示: D [ i ] D[i] D[i]为以 X [ i ] X[i] X[i]开头的最大子数组和
  • 明确原始问题 S m a x = m a x { D i } S_{max}=max\{D_i\} Smax=max{Di}

递推关系建立:

  • 情况一: D [ i + 1 ] > 0 D[i+1]>0 D[i+1]>0,则 D [ i ] = X [ i ] + D [ i + 1 ] D[i]=X[i]+D[i+1] D[i]=X[i]+D[i+1]
  • 情况二: D [ i + 1 ] ≤ 0 D[i+1]\leq0 D[i+1]0,则 D [ i ] = X [ i ] D[i]=X[i] D[i]=X[i]

自底向上计算:

  • 初始化: D [ n ] = X [ n ] D[n]=X[n] D[n]=X[n]
  • 递推公式:KaTeX parse error: {align} can be used only in display mode.

记录决策过程:

  • 构造追踪数组 R e c [ 1.. n ] Rec[1..n] Rec[1..n]
  • 情况一:结尾相同,则 R e c [ i ] = R e c [ i + 1 ] Rec[i]=Rec[i+1] Rec[i]=Rec[i+1]
  • 情况二:结尾不同,则 R e c [ i ] = i Rec[i]=i Rec[i]=i

最优方案追踪:

  • 从子问题中查找最优解
  • 最大子数组开头位置: i i i
  • 最大子数组结尾位置: R e c [ i ] Rec[i] Rec[i]

伪代码:

输入:数组X,数组长度n
输出:最大子数组和Smax,子数组起止位置l,r
//初始化
D[n] <- X[n]
Rec[n] <- n
//动态规划
for i <- n-1 to 1 do
| if D[i+1]>0 then
| | D[i] <- X[i]+D[i+1]
| | Rec[i] <- Rec[i+1]
| end
| else
| | D[i] <- X[i]
| | Rec[i] <-i
| end
end
//查找解
Smax <- D[1]
for i <- 2 to n do
| if Smax<D[i] then
| | Smax<-D[i]
| | l <- i
| | r <- Rec[i]
| end
end
return Smax,l,r

最长公共子序列

子序列:将给定序列中零个或多个元素去掉后所得的结果

蛮力枚举

枚举所有子序列
可能存在最优子结构和重叠子问题

动态规划

问题结构分析:

  • 给出问题表示: C [ i , j ] C[i,j] C[i,j]表示 X [ 1.. i ] X[1..i] X[1..i] Y [ 1.. j ] Y[1..j] Y[1..j]的最长公共子序列长度

递推关系建立:分析最优子结构

  • 考察末尾字符:
  • 情况1: x i ≠ y j x_i\neq y_j xi=yj时, C [ i , j ] = m a x { C [ i , j − 1 ] , C [ i − 1 , j ] } C[i,j]=max\{ C[i,j-1],C[i-1,j] \} C[i,j]=max{C[i,j1],C[i1,j]}
  • 情况2: x i = y j x_i= y_j xi=yj时, C [ i , j ] = C [ i − 1 , j − 1 ] + 1 C[i,j]= C[i-1,j-1]+1 C[i,j]=C[i1,j1]+1

自底向上计算:确定计算顺序

  • 初始化: C [ i , 0 ] = C [ 0. j ] = 0 C[i,0]=C[0.j]=0 C[i,0]=C[0.j]=0//某序列长度为0时,最长公共子序列长度为0
  • 递推公式:KaTeX parse error: {align} can be used only in display mode.

最优方案追踪:记录决策过程

  • 构造追踪数组 r e c [ 1.. n ] rec[1..n] rec[1..n],记录子问题来源:KaTeX parse error: {align} can be used only in display mode.

伪代码:

输入:两个序列X,Y
输出:X和Y的最长公共子序列
n <- length(X)
m <- length(Y)
//初始化
新建二维数组C[n,m]和rec[n,m]
for i <- 0 to n do
| C[i,0] <-0
end
for j <- 0 to m do
| C[0,j] <- 0
end
//动态规划
for i <- 1 to n do
| for j <- 1 to m do
|  | if Xi=Yj then
|  | | C[i,j] <- C[i-1.j-1]+1
|  | | rec[i,j] <- 'LU'
|  | end
|  | else if C[i-1,j]>=C[i,j-1] then
|  | | C[i,j] <- C[i-1,j]
|  | | rec[i,j] <- 'U'
|  | end
|  | else
|  | | C[i,j] <- C[i,j-1]
|  | | rec[i,j] <- 'L'
|  | end
| end
end
return C,rec

时间复杂度: O ( n ⋅ m ) O(n\cdot m) O(nm)

最长公共子串

子串:给定序列中零个或多个连续的元素组成的子序列

蛮力枚举

  1. 序列X和序列Y各选择一个位置
  2. 依次检查元素是否匹配:
    1. 元素相等则继续匹配
    2. 元素不等或某序列已达端点,匹配终止

可能存在最优子结构和重叠子问题。

动态规划

问题结构分析:

  • 给出问题表示: C [ i , j ] C[i,j] C[i,j]表示 X [ 1.. i ] X[1..i] X[1..i] Y [ 1.. j ] Y[1..j] Y[1..j]中,以 x i x_i xi y j y_j yj结尾的最长公共子串 Z [ 1.. l ] Z[1..l] Z[1..l]的长度

递推关系建立:分析最优子结构

  • KaTeX parse error: {align} can be used only in display mode.

自底向上计算:确定计算顺序

  • 初始化: C [ i , 0 ] = C [ 0. j ] = 0 C[i,0]=C[0.j]=0 C[i,0]=C[0.j]=0//某序列长度为0时,最长公共子串长度为0
  • 原始问题: p m a x = m a x { C [ i , j ] } p_{max}=max\{C[i,j]\} pmax=max{C[i,j]}

最优方案追踪:记录决策过程

  • 最长公共子串末尾位置 p m a x p_{max} pmax
  • 最长公共子串长度 l m a x l_{max} lmax

伪代码

输入:两个字符串X,Y
输出:X和Y的最长公共子串
//初始化
n <- length(X)
m <- length(Y)
新建二维数组C[n,m]
lmax <- 0
pmax <- 0
for i <- 0 to n do
| C[i,0] <- 0
end
for j <- 0 to n do
| C[0,j] <-0
end
//动态规划
for i <- 1 to n do
| for j <- 1 to m do
|  | if Xi != Yj then
|  | | C[i,j] <- 0
|  | end
|  | else
|  | | C[i,j] <- C[i-1,j-1]+1
|  | | if C[i,j] > lmax then
|  | | | lmax <- C[i,j]
|  | | | pmax <- i
|  | | end
|  | end
| end
end

编辑距离问题

编辑操作:删除、插入、替换
递推关系建立:只操作 s s s

  • 删除: D [ i , j ] = D [ i − 1 , j ] + 1 D[i,j]=D[i-1,j]+1 D[i,j]=D[i1,j]+1
  • 插入: D [ i , j ] = D [ i , j − 1 ] + 1 D[i,j]=D[i,j-1]+1 D[i,j]=D[i,j1]+1
  • 替换:KaTeX parse error: {align} can be used only in display mode.
  • 综合以上三种方式:KaTeX parse error: {align} can be used only in display mode.
  • 最小编辑距离VS最长公共子序列:
    • KaTeX parse error: {align} can be used only in display mode.
    • KaTeX parse error: {align} can be used only in display mode.

自底向上计算:

  • 初始化:
    • D [ i , 0 ] = i D[i,0]=i D[i,0]=i//把长度为 i i i的串变为空串至少需要 i i i次删除操作
    • D [ j , 0 ] = j D[j,0]=j D[j,0]=j//把空串变为长度为 j j j的串至少需要 j j j次插入操作
  • 递推公式:
    • KaTeX parse error: {align} can be used only in display mode.

最优方案追踪:

  • 追踪数组 R e c Rec Rec,记录子问题来源

image.png
image.png

伪代码

输入:字符串s和t
输出:s和t的最小编辑距离
n <- length(s)
m <- length(t)
新建D[0..n,0..m],Rec[0..n,0..m]两个数组
//初始化
for i <- 0 to n do
| D[i,0] <- i
| Rec[i,0] <- 'U'
end
for j <- 0 to m do
| D[0,j] <- j
| Rec[0,j] <- 'L'
end
//动态规划
for i <- 1 to n do
| for j <- 1 to m do
|  | c <- 0
|  | if si!=tj then
|  | | c <- 1
|  | end
|  | replace <- D[i-1,j-1]+c
|  | delete <- D[i-1,j]+1
|  | insert <- D[i,j-1]+1
|  | if replace =min{replace,delete,insert} then
|  | | D[i,j] <- D[i-1,j-1]+c
|  | | Rec[i,j] <- 'LU'
|  | end
|  | else if insert = min{replace,delete,insert} then
|  | | D[i,j] <- D[i,j-1]+1
|  | | Rec[i,j] <- 'L'
|  | end
|  | else
|  | | D[i,j] <- D[i-1,j]+1
|  | | Rec[i,j] <- 'U'
|  | end
| end
end

最优方案追踪-伪代码

输入:矩阵Rec,字符串s,t,索引位置i,j
输出:操作序列
if i=0 and j=0 then
| return NULL
end
if Rec[i,j]='LU' then
| Print-MED(Rec,s,t,i-1,j-1)
| if si=tj then
| | print '无需操作'
| end
| else
| | print '用tj代替si'
| end
end
else if Rec[i,j]='U' then
| Print-MED(Rec,s,t,i-1,j)
| print '删除si'
end
else
| Print-MED(Rec,s,t,i,j-1)
| print '插入tj'
end

钢条切割问题

image.png

形式化定义

输入:

  • 钢条长度 n n n
  • 价格表 p l p_l pl:表示长度为 l l l的钢条价格

输出:

  • 一组切割方案,令收益最大

问题简化

假设至多切割1次,枚举所有可能的切割位置:

  • 不切: p [ 10 ] p[10] p[10]
  • 切割: p [ i ] + p [ 10 − i ] p[i]+p[10-i] p[i]+p[10i]

假设至多切割2次:

  • 先将钢条切割一段
  • 在剩余钢条中继续切割,剩余的问题变为至多切一刀的问题

原始问题不限制切割次数

  • 可能存在最优子结构和重叠子问题

动态规划

问题结构分析:

  • 给出问题表示: C [ j ] C[j] C[j]表示切割长度为 j j j的钢条可得的最大收益

递推关系建立: C [ j ] = m a x { p [ i ] + C [ j − i ] , p [ j ] } C[j]=max\{ p[i]+C[j-i],p[j] \} C[j]=max{p[i]+C[ji],p[j]}
image.png
自底向上计算:

  • 初始化: C [ 0 ] = 0 C[0]=0 C[0]=0//切割长度为0的钢条,总收益为0
  • 递推公式: C [ j ] = m a x { p [ i ] + C [ j − i ] , p [ j ] } C[j]=max\{ p[i]+C[j-i],p[j] \} C[j]=max{p[i]+C[ji],p[j]}

最优方案追踪:记录决策过程

  • 构造追踪数组 r e c [ 1.. n ] rec[1..n] rec[1..n]
  • r e c [ j ] rec[j] rec[j]:记录长度为 j j j的钢条的最优切割方案

image.png

伪代码

输入:钢条价格表p[1..n],钢条长度n
输出:最大收益C[n],钢条切割方案
//初始化
新建一维数组C[0..n],rec[0..n]
C[0] <- 0
//动态规划
for j <- 1 to n do
| q <- p[j]
| rec[j] <- j
| for i <- 1 to j-1 do
| | if q<p[i]+C[j-i] then
| | | q <- p[i]+C[j-i]
| | | rec[j] <- i
| | end
| end
| C[j] <- q
end
//输出最优方案
while n>0 do
| print rec[n]
| n <- n-rec[n]
end

时间复杂度为 O ( n 2 ) O(n^2) O(n2)

矩阵链乘法问题

矩阵乘法时间复杂度:

  • 计算一个数字: q q q次标量乘法
  • p × r p\times r p×r个数字: Θ ( p q r ) \Theta(pqr) Θ(pqr)

三个矩阵相乘:

  • ( U V ) W = U ( V W ) (UV)W=U(VW) (UV)W=U(VW)
  • 新问题:矩阵乘法结合的顺序

image.png
n n n个矩阵相乘:

  • 一系列矩阵按顺序排列
  • 每个矩阵的行数=前一个矩阵的列数
  • n n n个矩阵相乘也被称为矩阵链乘法

问题定义

输入:

  • n n n个矩阵组成的矩阵链 U 1.. n = < U 1 , U 2 , . . . , U n > U_{1..n}=<U_1,U_2,...,U_n> U1..n=<U1,U2,...,Un>
  • 矩阵链 U 1.. n U_{1..n} U1..n对应的维度数分别为 p 0 , p 1 , . . . , p n p_0,p_1,...,p_n p0,p1,...,pn U i U_i Ui的维度是 p i − 1 × p i p_{i-1}\times p_i pi1×pi

输出:

  • 找到一种加括号的方式,使得矩阵链标量乘法的次数最少

image.png
如何保证不遗漏最优分割位置:

  • 枚举所有可能位置 i . . j − 1 i..j-1 i..j1,共 j − i j-i ji

image.png
问题结构分析:

  • 明确原始问题: D [ 1 , n ] D[1,n] D[1,n]表示计算矩阵链 U 1.. n U_{1..n} U1..n所需标量乘法的最小次数

递推关系建立:

  • 对每个位置 k ( i ≤ k ≤ j ) k(i\leq k\leq j) k(ikj) D [ i , j ] = D [ i , k ] + D [ k + 1 , j ] + p i − 1 p k p j D[i,j]=D[i,k]+D[k+1,j]+p_{i-1}p_kp_j D[i,j]=D[i,k]+D[k+1,j]+pi1pkpj
  • 枚举所有 k k k,得到递推式: D [ i , j ] = m i n ( D [ i , k ] + D [ k + 1 , j ] + p i − 1 p k p j ) D[i,j]=min(D[i,k]+D[k+1,j]+p_{i-1}p_kp_j) D[i,j]=min(D[i,k]+D[k+1,j]+pi1pkpj)

自底向上计算:

  • 初始化: i = j i=j i=j时,矩阵链只有一个矩阵,乘法次数为0

image.png
最优方案追踪:

  • 构造追踪数组 R e c [ 1.. n , 1.. n ] Rec[1..n,1..n] Rec[1..n,1..n]
  • R e c [ i , j ] Rec[i,j] Rec[i,j]:矩阵链 U i . . j U_{i..j} Ui..j的最优分割位置

image.png

伪代码

输入:矩阵维度数组p,矩阵的个数n
输出:最小标量乘法次数,分割方式追踪数组Rec
新建二维数组D[1..n,1..n],Rec[1..n,1..n]
//初始化
for i <- 1 to n do
| D[i,i] <- 0
end
//动态规划
for l <- 2 to n do
| for i <- 1 to n-l+1 do
| | j <- i+l-1
| | for k <- i to j-1 do
| | | q <- D[i,k]+D[k+1,j]+p[i-1]*p[k]*p[j]
| | | if q<D[i,j] then
| | | | D[i,j] <- q
| | | | Rec[i,j] <- k
| | | end
| | end
| end
end
return D[1,n],Rec

时间复杂度 O ( n 3 ) O(n^3) O(n3)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/149008.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux学习之悟空派上实现OLED的无线网IP及CPU温度显示【守护进程】

起因 最近各种网购平台似乎都在推送99元的悟空派全志H3的开发板&#xff0c;出于好奇就买了一块来试试水&#xff0c;由于这块板子基本上和orangepi-Zero的硬件结构一模一样&#xff0c;所以设备树、boot这些就用orangepi现成的部件了。 因为本人比较喜欢使用SSH操作&#xff…

回归预测 | MATLAB实现PSO-SVR粒子群优化支持向量机回归多输入单输出预测

回归预测 | MATLAB实现PSO-SVR粒子群优化支持向量机回归多输入单输出预测 目录 回归预测 | MATLAB实现PSO-SVR粒子群优化支持向量机回归多输入单输出预测预测效果基本介绍模型描述程序设计预测效果 <

【MyBatis-Plus】快速精通Mybatis-plus框架—快速入门

大家在日常开发中应该能发现&#xff0c;单表的CRUD功能代码重复度很高&#xff0c;也没有什么难度。而这部分代码量往往比较大&#xff0c;开发起来比较费时。 因此&#xff0c;目前企业中都会使用一些组件来简化或省略单表的CRUD开发工作。目前在国内使用较多的一个组件就是…

华为云云耀云服务器L实例评测|安装搭建学生成绩管理系统

1.前言概述 华为云耀云服务器L实例是新一代开箱即用、面向中小企业和开发者打造的全新轻量应用云服务器。多种产品规格&#xff0c;满足您对成本、性能及技术创新的诉求。云耀云服务器L实例提供丰富严选的应用镜像&#xff0c;实现应用一键部署&#xff0c;助力客户便捷高效的在…

全排列[中等]

优质博文&#xff1a;IT-BLOG-CN 一、题目 给定一个不含重复数字的数组nums&#xff0c;返回其所有可能的全排列。你可以按任意顺序返回答案。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,3] 输出&#xff1a;[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] 示例…

JAVA面经整理(8)

一)为什么要有区&#xff0c;段&#xff0c;页&#xff1f; 1)页是内存和磁盘之间交互的基本单位内存中的值修改之后刷到磁盘的时候还是以页为单位的索引结构给程序员提供了高效的索引实现方式&#xff0c;不过索引信息以及数据记录都是记录在文件上面的&#xff0c;确切来说是…

【牛客网-面试必刷TOP 101】01链表

BM1 反转链表 解题思路 第一种方法&#xff1a;借助栈 1. 栈的特点是先进后出&#xff0c;用stack来存储链表&#xff0c;之后新建一个头节点&#xff0c;按出栈顺序拼接形成新的链表。 2. 注意&#xff0c;最后一个节点的next要赋值null 3. 空间复杂度O(N), 时间复杂度O(N)J…

ThemeForest – Canvas 7.2.0 – 多用途 HTML5 模板

ThemeForest 上的 HTML 网站模板受到全球数百万客户的喜爱。与包含网站所有页面并允许您在 WP 仪表板中自定义字体和样式的 WordPress 主题不同&#xff0c;这些设计模板是用 HTML 构建的。您可以在 HTML 编辑器中编辑模板&#xff0c;但不能在 WordPress 上编辑模板&#xff0…

医疗器械标准目录汇编2022版共178页(文中附下载链接!)

为便于更好地应用医疗器械标准&#xff0c;国家药监局医疗器械标准管理中心组织对现行1851项医疗器械国家和行业标准按技术领域&#xff0c;编排形成《医疗器械标准目录汇编&#xff08;2022版&#xff09;》 该目录汇编分为通用技术领域和专业技术领域两大类&#xff0c;通用…

ChatGPT付费创作系统V2.3.4独立版 +WEB端+ H5端 + 小程序最新前端

人类小徐提供的GPT付费体验系统最新版系统是一款基于ThinkPHP框架开发的AI问答小程序&#xff0c;是基于国外很火的ChatGPT进行开发的Ai智能问答小程序。当前全民热议ChatGPT&#xff0c;流量超级大&#xff0c;引流不要太简单&#xff01;一键下单即可拥有自己的GPT&#xff0…

14链表-环形链表、龟兔赛跑算法

目录 LeetCode之路——141. 环形链表 分析&#xff1a; 解法一&#xff1a;哈希表 解法二&#xff1a;龟兔赛跑 LeetCode之路——141. 环形链表 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针…

优化方法的应用(optimtool.example)

import optimtool as oo from optimtool.base import np, sp, pltpip install optimtool>2.4.2优化方法的应用&#xff08;optimtool.example&#xff09; import optimtool.example as oeLasso问题&#xff08;Lasso&#xff09; oe.Lasso.[函数名]([矩阵A], [矩阵b], [因…

矩阵的c++实现(2)

上一次我们了解了矩阵的运算和如何使用矩阵解决斐波那契数列&#xff0c;这一次我们多看看例题&#xff0c;了解什么情况下用矩阵比较合适。 先看例题 1.洛谷P1939 【模板】矩阵加速&#xff08;数列&#xff09; 模板题应该很简单。 补&#xff1a;1<n<10^9 10^9肯定…

QGIS文章四——对遥感影像进行土地类型分类

关于土地类型分类&#xff0c;按照性质、用途、利用现状有不同的分类标准。 一、按照国家土地性质分类标准&#xff0c;一般分五类:商业用地、综合用地、住宅用地、工业用地和其他用地。 二、按照用途进行土地分类&#xff1a;可以分为农用地、建设用地和未利用土地&#xff0c…

专题一:双指针【优选算法】

双指针应用场景&#xff1a; 数组划分、数组分块 目录 一、移动0 二、复写0 从后向前 三、快乐数 链表带环 四、盛水最多的容器 单调性双指针 五、有效三角形个数 单调性双指针 六、和为s的两个数字 七、三数之和 细节多 需再练 一、移动0 class Solution { public:void move…

【iptables 实战】9 docker网络原理分析

在开始本章阅读之前&#xff0c;需要提前了解以下的知识 阅读本节需要一些docker的基础知识&#xff0c;最好是在linux上安装好docker环境。提前掌握iptables的基础知识&#xff0c;前文参考【iptables 实战】 一、docker网络模型 docker网络模型如下图所示 说明&#xff1…

如何禁用Windows 10快速启动(以及为什么要这样做)

如果您不想启用Windows 10快速启动&#xff0c;则可以相对轻松地禁用它。 快速启动是一项功能&#xff0c;首先在 Windows 8 中作为快速启动实现&#xff0c;并延续到 Windows 10&#xff0c;让您的 PC 更快地启动&#xff0c;因此得名。虽然这个方便的功能可以通过将操作系统…

MySQL 事务隔离级别与锁机制详解

目录 一、前言二、事务及其ACID属性三、并发事务处理带来的问题四、事务隔离级别4.1、隔离级别分类4.2、查看当前数据库的事务隔离级别:4.3、临时修改数据库隔离级别&#xff08;重启MySQL后恢复到配置中的级别&#xff09; 五、表数据准备六、MySQL常见锁介绍5.1、锁分类5.2、…

软考高级之系统架构师之设计模式

概述 设计模式是一种通用的设计方法&#xff0c;实际开发中可能不止23种。为方便理解和应用&#xff0c;一般分为3类&#xff1a; 创建型&#xff0c;通过采用抽象类所定义的接口&#xff0c;封装系统中对象如何创建、组合等信息。工厂方法模式、抽象工厂模式、单例模式、建造…

PsychoPy Coder 心理学实验 斯特鲁普效应

选题&#xff1a;斯特鲁普效应实验 选题来源&#xff1a;你知道的「有趣的心理学实验」有哪些&#xff1f; - 知乎 (zhihu.com) 测试目标&#xff1a;探索斯特鲁普效应&#xff0c;即被试在判断文字颜色时&#xff0c;当文字的颜色与其所表示的颜色名称不一致时&#xff0c;是…