《这就是ChatGPT》读书笔记

在这里插入图片描述
书名:这就是ChatGPT
作者:[美] 斯蒂芬·沃尔弗拉姆(Stephen Wolfram)

ChatGPT在做什么?

ChatGPT可以生成类似于人类书写的文本,它基本任务是弄清楚如何针对它得到的任何文本产生“合理的延续”。当ChatGPT写一篇文章时,它实质上只是在一遍又一遍地询问“根据目前的文本,下一个词应该是什么”,并且每次都添加一个词。更准确地说,它是每次都添加一个“标记”(token),而标记可能只是词的一部分。这就是它有时可以“造词”的原因。
可以简单的将ChatGPT做的事情看作是“单字接龙”,它总是根据概率选择下一个字,但是这些概率是从何而来的呢?
最佳思路是建立一个模型,让我们能够估计序列出现的概率。ChatGPT的核心正是所谓的“大语言模型”。

什么是模型?

假设你想(像16世纪末的伽利略一样)知道从比萨斜塔各层掉落的炮弹分别需要多长时间才能落地。当然,你可以在每种情况下进行测量并将结果制作成表格。不过,你还可以运用理论科学的本质:建立一个模型,用它提供某种计算答案的程序,而不仅仅是在每种情况下测量和记录。
模型是指有某种特定的基本结构,以及用于拟合数据的一定数量的“旋钮”(也就是可以设置的参数)。
对于ChatGPT,我们需要为人脑产生的人类语言文本建立模型。
如果函数给出的结果总是与人类的意见相符,那么我们就有了一个“好模型”。

LLM 容易产生所谓的 “幻觉”,即生成看似合理但实际并非真实的输出,这是因为 LLM 在训练时是基于训练数据中的模式预测下一个最可能的词,而非真正理解信息。

神经网络

用于图像识别等任务的典型模型到底是如何工作的呢?目前最受欢迎而且最成功的方法是使用神经网络。可以视作对大脑工作机制的简单理想化。
神经网络可以被视为根据其输入和权重计算的一个数学函数。可以执行各种任务,还可以通过逐步“根据样例训练”来学习执行这些任务
神经网络的基本思想是利用大量简单(本质上相同)的组件来创建一个灵活的“计算结构”,并使其能够逐步通过学习样例得到改进。
神经网络的一个重要特征是说到底和计算机一样只是在处理数据。
如果有一个足够大的神经网络,那么你可能能够做到人类可以轻易做到的任何事情。

嵌入

神经网络以目前的设置来说,基本上是基于数的。因此,如果要用它来处理像文本这样的东西,我们需要一种用数表示文本的方法。
可以将嵌入视为一种尝试通过数的数组来表示某些东西“本质”的方法,其特性是“相近的事物”由相近的数表示,这就是“嵌入”(embedding)的思想。我们可以将词嵌入视为试图在一种“意义空间”中布局词,其中“在意义上相近”的词会出现在相近的位置。如果测量这些向量之间的距离,就可以找到词之间的“相似度”。
如何才能构建这样的嵌入呢?大致的想法是查看大量的文本(这里查看了来自互联网的50亿个词),然后看看各个词出现的“环境”有多“相似”。例如,alligator(短吻鳄)和crocodile(鳄鱼)在相似的句子中经常几乎可以互换,这意味着它们将在嵌入中被放在相近的位置。但是,turnip(芜菁)和eagle(鹰)一般不会出现在相似的句子中,因此将在嵌入中相距很远。

ChatGPT的内部原理

从根本上说,ChatGPT是一个专门为处理语言而设置的庞大的神经网络,ChatGPT的总体目标是根据所接受的训练(查看来自互联网的数十亿页文本,等等),以“合理”的方式续写文本。它最显著的特点是一个称为Transformer的神经网络架构,Transformer引入了“注意力”的概念。
Transformer的思想是,为组成一段文本的标记序列做与此相似的事情。但是,Transformer不是仅仅定义了序列中可以连接的固定区域,而是引入了“注意力”的概念。

它的操作分为三个基本阶段:
● 第一阶段,它获取与目前的文本相对应的标记序列,并找到表示这些标记的一个嵌入(即由数组成的数组);
● 第二阶段,它以“标准的神经网络的方式”对此嵌入进行操作,值“像涟漪一样依次通过”网络中的各层,从而产生一个新的嵌入(即一个新的数组);
● 第三阶段,它获取此数组的最后一部分,并据此生成包含约50000个值的数组,这些值就成了各个可能的下一个标记的概率。(没错,使用的标记数量恰好与英语常用词的数量相当,尽管其中只有约3000个标记是完整的词,其余的则是片段。)
这条流水线的每个部分都由一个神经网络实现,其权重是通过对神经网络进行端到端的训练确定的。换句话说,除了整体架构,实际上没有任何细节是有“明确设计”的,一切都是从训练数据中“学习”来的。
当ChatGPT要生成一个新的标记时,它总是“读取”(即获取为输入)之前的整个标记序列,包括ChatGPT自己先前“写入”的标记。

个人常用的GPT工具推荐

文生文:

kimi
智谱清言

文生图

即梦

个人书评

这本书是看小红书推荐的,OpenAI的CEO称之为“对ChatGPT原理最佳的解释”,本书包含作者在ChatGPT问世后不久写的两篇长文。第一篇介绍了ChatGPT,第二篇则展望了ChatGPT的未来,第二篇我没读,只读了第一篇。第一篇介绍了ChatGPT在做什么,并且一步一步推导如何通过计算机生成语言文字解释了它为何拥有像人类一样的生成语言的能力,推导过程中还会解释重要的概念,但是个人感觉并不适合完全新手小白阅读,像我读起来很吃力,很多内容读不太懂,但是我觉得不是作者的问题,是我文化水平的问题,所以我给这本书4颗星,满分5颗星。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/324396.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring框架学习笔记(一):Spring基本介绍(包含IOC容器底层结构)

1 官方资料 1.1 官网 https://spring.io/ 1.2 进入 Spring5 下拉 projects, 进入 Spring Framework 进入 Spring5 的 github 1.3 在maven项目中导入依赖 <dependencies><!--加入spring开发的基本包--><dependency><groupId>org.springframework<…

STC -PWM

一.STC8H1K16初始化,以下一步配置后就会有波形输出. // // 函数: PWMB_Output_init // 描述: 用户初始化程序. // 参数: None. // 返回: None. // 版本: V1.0, 2020-09-28 //u16 PWM8__setDuty25000;u16 PWM8__setPeriod50000; void PWMB_Output_init(void) {PWMx_InitDefi…

数据驱动实战二

目标 掌握数据驱动的开发流程掌握如何读取JSON数据文件巩固PO模式 1. 案例 对TPshop网站的登录模块进行单元测试 1.1 实现步骤 编写测试用例采用PO模式的分层思想对页面进行封装编写测试脚本定义数据文件&#xff0c;实现参数化 1.2 用例设计 1.3 数据文件 {"login…

CSS-背景属性

目录 背景属性 background-color (背景颜色 ) background-image (背景图片 ) background-repeat (背景图平铺方式 ) no-repeat 不平铺 repeat-x 水平方向平铺 repeat-y 垂直方向平铺 repeat 平铺 background-position (背景图位置) background-size (背景缩…

【深耕 Python】Quantum Computing 量子计算机(4)量子物理概念(一)

写在前面 往期量子计算机博客&#xff1a; 【深耕 Python】Quantum Computing 量子计算机&#xff08;1&#xff09;图像绘制基础 【深耕 Python】Quantum Computing 量子计算机&#xff08;2&#xff09;绘制电子运动平面波 【深耕 Python】Quantum Computing 量子计算机&…

开源RAG框架汇总

前言 本文搜集了一些开源的基于LLM的RAG&#xff08;Retrieval-Augmented Generation&#xff09;框架&#xff0c;旨在吸纳业界最新的RAG应用方法与思路。如有错误或者意见可以提出&#xff0c;同时也欢迎大家把自己常用而这里未列出的框架贡献出来&#xff0c;感谢~ RAG应用…

Redis线程模型

文章目录 &#x1f496; Redis 单线程模型⭐ 单线程监听大量的客户端连接⭐ Redis 6.0 之前为什么不用多线程&#xff1f; &#x1f496; Redis多线程⭐ Redis 后台线程⭐ Redis 网络IO多线程 对于读写命令来说&#xff0c;Redis 一直是单线程模型。不过&#xff0c;在 Redis 4…

后缀树与后缀数组简介及代码模板 ← AcWing 2715

【题目来源】https://www.acwing.com/problem/content/2717/【题目描述】 给定一个长度为 n 的字符串&#xff0c;只包含大小写英文字母和数字。 将字符串中的 n 个字符的位置编号按顺序设为 1∼n。 并将该字符串的 n 个非空后缀用其起始字符在字符串中的位置编号表示。 现在要…

保姆级零基础微调大模型(LLaMa-Factory,多卡版)

此处非常感谢https://github.com/hiyouga/LLaMA-Factory这个项目。 看到网上的教程很多都是教如何用webui来微调的,这里出一期命令行多卡微调教程~ 1. 模型准备 模型下载比较方便的方法: 1. modelscope社区(首选,速度很高,并且很多需要申请的模型都有)注意要选择代码…

「TypeScript」TypeScript入门练手题

前言 TypeScript 越来越火&#xff0c;现在很多前端团队都使用它&#xff0c;因此咱们前端码农要想胜任以后的前端工作&#xff0c;就要更加熟悉它。 入门练手题 interface A {x: number;y: number; }type T Partial<A>;const a: T { x: 0, y: 0 }; const b: T { …

Web3 Tools - Base58

Base58编码 Base58编码是一种用于表示数字的非常见的编码方法。它通常用于加密货币领域&#xff0c;例如比特币和其他加密货币的地址表示。 什么是Base58编码&#xff1f; Base58编码是一种将数字转换为人类可读形式的编码方法。与常见的Base64编码不同&#xff0c;Base58编码…

JVM调参实践总结

JVM调优–理论篇从理论层面介绍了如何对JVM调优。这里再写一篇WIKI&#xff0c;尝试记录下JVM参数使用的最佳实践&#xff0c;注意&#xff0c;这里重点介绍HotSpot VM的调参&#xff0c;其他JVM的调参可以类比&#xff0c;但不可照搬。 Java版本选择 基于Java开发应用时&…

【问题分析】锁屏界面调起google语音助手后壁纸不可见【Android 14】

1 问题描述 为系统和锁屏分别设置两张不同的壁纸&#xff0c;然后在锁屏界面长按Power调起google语音助手后&#xff0c;有时候会出现壁纸不可见的情况&#xff0c;如以下截图所示&#xff1a; 有的时候又是正常的&#xff0c;但显示的也是系统壁纸&#xff0c;并非是锁屏壁纸…

Map按value降序并统计

package com.ldj.cloud.user.demo;import java.util.*;/*** User: ldj* Date: 2024/5/11* Time: 10:03* Description: map按value降序*/ public class Tr {public static void main(String[] args) {ArrayList<String> list new ArrayList<>();list.add("a&q…

纯血鸿蒙APP实战开发——阅读翻页方式案例

介绍 本示例展示手机阅读时左右翻页&#xff0c;上下翻页&#xff0c;覆盖翻页的功能。 效果图预览 使用说明 进入模块即是左右翻页模式。点击屏幕中间区域弹出上下菜单。点击设置按钮&#xff0c;弹出翻页方式切换按钮&#xff0c;点击可切换翻页方式。左右翻页方式可点击翻…

【前端】JavaScript的WebAPI | DOM | 获取元素 | 事件 | 操作元素 | 操作节点

文章目录 [toc] JavaScript的WebAPI一、DOM1.DOM树2.获取元素1.querySelector2.querySelectorAll 3.事件事件三要素点击事件键盘事件 4.操作元素获取/修改元素内容获取/修改元素属性获取/修改表单属性获取/修改样式属性行内样式操作类名样式操作 5.操作节点新增节点删除节点 Ja…

EasyRecovery数据恢复软件2024最新免费无需激活版下载

EasyRecovery数据恢复软件是一款功能强大、操作简便的数据恢复工具&#xff0c;旨在帮助用户解决各种数据丢失问题。无论是由于误删除、格式化、磁盘损坏还是其他原因导致的数据丢失&#xff0c;EasyRecovery都能提供有效的恢复方案。以下是对EasyRecovery软件功能的详细介绍。…

XWiki 服务没有正确部署在tomcat中,如何尝试手动重新部署?

1. 停止 Tomcat 服务 首先&#xff0c;您需要停止正在运行的 Tomcat 服务器&#xff0c;以确保在操作文件时不会发生冲突或数据损坏&#xff1a; sudo systemctl stop tomcat2. 清空 webapps 下的 xwiki 目录和 work 目录中相关的缓存 删除 webapps 下的 xwiki 目录和 work …

IP报文在设备间传递的封装过程

IP报文传递过程 1、PC1访问PC2报文传递过程1.1、PC1准备数据请求报文封装1.2、PC1准备ARP请求报文1.3、PC2准备ARP响应报文1.4、PC1完成数据请求报文封装 2、PC1访问PC3报文传递过程2.1、PC1准备数据请求报文封装2.2、PC1准备获取网关MAC地址的ARP请求报文2.3、网关准备ARP响应…

Github2024-05-10开日报 Top10

根据Github Trendings的统计&#xff0c;今日(2024-05-10统计)共有10个项目上榜。根据开发语言中项目的数量&#xff0c;汇总情况如下&#xff1a; 开发语言项目数量Python项目4TypeScript项目4JavaScript项目1Lua项目1C项目1Rust项目1Dart项目1 RustDesk: 用Rust编写的开源远…