stata空间计量模型基础+检验命令LM检验、sem、门槛+arcgis画图

目录

  1. 怎么安装stata命令 3
  2. 怎么使用已有的数据 4
  3. 数据编辑器中查看数据 4
  4. 怎么删除不要的列 4
  5. 直接将字符型变量转化为数值型的命令 4
  6. 改变字符长度 4
  7. 描述分析 4
  8. 取对数 5
  9. 相关性分析 5
  10. 单位根检验 5
  11. 权重矩阵标准化 6
  12. 计算泰尔指数 6
  13. 做核密度图 7
  14. Moran’s I 指数 8
  15. 空间计量模型 9
  16. LM检验 10
  17. Hausman 检验 11
  18. LR 检验 11
  19. 检验是否退化 13
  20. Wald 检验 14
  21. 交互效应 14
  22. 中介效应 15
  23. 门槛模型 19
  24. Arcgis画图 20
  25. 怎么选择想要的省份 24
  26. 空间引力模型 25
    1.怎么安装stata命令
    ① ssc install 名字
    在这里插入图片描述

②  search 名字
在打开的网页点击随便一个蓝色连接
在这里插入图片描述

点击click…
在这里插入图片描述
完成
在这里插入图片描述
2.怎么使用已有的数据
文件——更改工作目录——选择到数据所在的文件位置——确定
这样子就把当前的stata程序也保存在了同一目录下了,就可以使用在此文件的数据了
3.数据编辑器中查看数据

4.怎么删除不要的列
导入数据——use data——drop 名字
5.直接将字符型变量转化为数值型的命令
当数据格式是str,文本类型,所以呈现红色
destring 变量名,replace 新的名字(英文)
encode 变量,generate(yy)
6.改变字符长度
format var8 %16.0g *16.0意思是改为16个字符那么长
7.描述分析
ssc inatall asdoc *下载包
asdoc sum y en res tec con
在这里插入图片描述
8.取对数
foreach var of varlist y en res tec con{
gen ln ‘var’=log(‘var’)}
9.相关性分析
correlate y tec res en con
在这里插入图片描述
10.单位根检验
n大于t可以不做,想要检验一个名为“inflation”的变量是否存在单位根,可以运行以下命令
DF检验
dfuller inflation, trend
ADF检验
Dfuller inflation, lags(4)
面板数据单位根检验
如果p值小于显著性水平,则可以拒绝原假设并认为该变量不存在单位根。
xtunitroot llc lnrxrate , demean lags(aic 10) kernel(bartlett nwest)
demean表示去截面均值
lags(#) 表示序列变量差分的滞后项数#,其中截面滞后阶数相同
lags(aic #) lags(bic #) lags(hqic #)以aic bic hqic准则判定最大滞后阶数#
trend 表示加入趋势项并默认加入个体固定项
noconstant 表示趋势项与个体项都不加入
trend和noconstant都不加默认个体固定项
kernel(kernel_spec) 为核函数,估计渐进方差,具体设定包括 ba pa qu等)
11.权重矩阵标准化
spatwmat using W.dta, name(W) standardize *行标准化
12.计算泰尔指数
在这里插入图片描述
在这里插入图片描述

数据如下

在这里插入图片描述
. use data3.dta
. gen I城镇= 城镇人口* 城镇收入
. gen I农村= 农村人口农村收入
. sort I农村
. gen Iall= I城镇+ I农村
. gen Pall=城镇人口+ 农村人口
. gen I比例城镇= I城镇/ Iall
. gen I比例农村= I农村/ Iall
. gen p比例城镇= 城镇人口 / Pall
. gen p比例农村= 农村人口 / Pall
. gen theil= I比例城镇
ln( I比例城镇/ p比例城镇)+ I比例农村*ln( I比例农村/ p比例农村)
. sum thei
13.做核密度图
假如做城镇收入的核密度图
kdensity 城镇收入
更改坐标
. kdensity 城镇收入,xlabel(0.1(0.2)1.5) ylabel(0(0.2)1.5)
画多个核密度
. kdensity 城镇收入,addplot(kdensity 农村收入) xlabel(0.1(0.2)1.5) ylabel(0(0.2 )1.5) *两个图
. kdensity 城镇收入,addplot((kdensity 农村收入)(kdensity 城镇人口)) xlabel(0.1(0.2)1.5) ylabel(0(0.2)1.5) *三个图
在这里插入图片描述
增加坐标名
. kdensity 城镇收入,xlabel(0.1(0.2)1.5) ylabel(0(0.2)1.5) title(“收入核密度图”) xtitle(“时间”) ytitle(“密度”)

14.Moran’s I 指数
preserve
keep if year==2010
spatgsa y,weights(W) moran
restore
*把年份改了就可以做所有年的,结果中p值小于0.1则存在空间效应
在这里插入图片描述
15.空间计量模型
先把空间权重矩阵放进去
spatwmat using w.dta,name(w) standardize *标准化
clear
use data *使用数据
xtset id year
随机效应模型
xsmle y x a, model(sdm) wmat(W) type(both) nolog effects re
时间固定效应
xsmle y x a, model(sdm) wmat(W) type(time) nolog effects fe
个体固定效应
xsmle y x a, model(sdm) wmat(W) type(ind) nolog effects fe
双固定效应
xsmle y x a, model(sdm) wmat(W) type(both) nolog effects fe

  • effects表示显示直接效应、间接效应与总效应,noeffects不显示
    加上约束变量只看x1的空间效应
    xsmle y x1 x2 x3,wmat(W) durbin(x1) model(SDM) fe
    est ic看AIC BIC
    16.LM检验
    *判断是否存在空间依赖性,是才可以做空间计量模型
    *进行LM检验之前,需要将空间权重矩阵扩大
    use w / /W 为权重名称
    spcs2xt a1-a30,matrix(w)time(13) //扩大13倍
    spatwmat using wxt,name(W)
    clear
    use data *调用论文数据 data
    xtset id year
    reg y x1 x2 x3 a1 a2 a3 a4 *ols的结果
    spatdiag,weights(W) *LM检验
    在这里插入图片描述
    一般来说,P值小于0.1则显著。Spatial error为空间误差模型(SEM);Spatial lag为空间滞后模型(SAR);Robust为结果稳健的意思。Error的p值不显著,不适合空间误差,在这里空间滞后也不显著。
    在这里插入图片描述
    17.Hausman 检验
    检验用于选择固定效应模型还是随机效应模型,用没有扩大的权重矩阵
    方法一
    spatwmat using w.dta,name(w) standardize
    xsmle y en res tec con , fe model(sdm) wmat(w) hausman nolog noeffects
    在这里插入图片描述

p大于0.1选择随机,否则选择固定

方法二
xsmle y x1 x2 x3 a1 a2 a3 a4 , fe model(sdm) wmat(W) nolog noeffects type(both)
est store fe
xsmle y x1 x2 x3 a1 a2 a3 a4 , re model(sdm) wmat(W) nolog noeffects type(both)
est store re
hausman fe re

18.LR 检验
判断使用何种固定效应模型,检验地区固定效应、时间固定效应以及双固定效应,三种效应哪个最适合
spatwmat using W, name(W) standardize
个体固定
xsmle y x1 x2 x3 a1 a2 a3 a4 , fe model(sdm) wmat(W) nolog noeffects type(ind)
est store ind
时间固定
xsmle y x1 x2 x3 a1 a2 a3 a4 , fe model(sdm) wmat(W) nolog noeffects type(time)
est store time
双固定
xsmle y x1 x2 x3 a1 a2 a3 a4 , fe model(sdm) wmat(W) nolog noeffects type(both)
est store both
lrtest both ind,df(10) *看哪一个最优
lrtest both time,df(10)
操作案例
xsmle y en res tec con , fe model(sdm) wmat(w) nolog noeffects type(ind)
est store ind
xsmle y en res tec con , fe model(sdm) wmat(w) nolog noeffects type(time)
est store time
xsmle y en res tec con , fe model(sdm) wmat(w) nolog noeffects type(both)
est store both
lrtest both ind,df(10) *这才是判断哪一个最优,前面只需要跑一下就可以了
在这里插入图片描述
可见P值显著,那么拒绝使用个体,从而使用both
在这里插入图片描述
同理选择双向固定的both
19.检验是否退化
检验空间杜宾模型是否会退化为空间滞后模型和空间误差模型
操作案例
xsmle y en res tec con , fe model(sdm) wmat(w) nolog noeffects type(both)
est store sdm
xsmle y en res tec con , fe model(sdm) wmat(w) nolog noeffects type(both)
est store sar
. xsmle y en res tec con , fe model(sem) emat(w) nolog noeffects type(both)
est store sem
lrtest sdm sar *H0:SDM退化为SAR
如果P小于0.1显著,不可以退化,P值大于0.1,说明可以退化
lrtest sdm sem *H0:SDM退化为SEM
如果P小于0.1显著,不可以退化,P值大于0.1,说明可以退化
20.Wald 检验
clear all
use data
spatwmat using W.dta,name(W) standardize
xtset id year
xsmle y x a, fe model(sdm) wmat(W) type(both) nolog noeffects
Test x=a=0
Test [wx]x=0
Test[wx]x=[wx]a=0
estat ic
21.交互效应
在这里插入图片描述

gen c = a*b 产生a和b的交互项
然后做回归
gen c = en
res
reg y en res con c
11.中介效应
ba和c’同号则表示发挥了中介效应,异号则表示稀释效应。
在这里插入图片描述
中介效应方法一
reg tec en res con *在这里假设tec为中介变量,en是核心解释变量
在这里插入图片描述

看en所对应的p小于0.1可见是显著的
estimates store reg1 *结果存起来
reg y res con tec en
*tec所对应的p值小于0.1
*tec所对应的p值小于0.1
在这里插入图片描述

estimates store reg2
esttab reg1 reg2 using out.doc,mtitles r2(%6.2f) ar2(%6.2f)
*把结果输入到word其中r2为R方 ar2为调整的
*如果都显著说明存在中介效应,在这里reg2回归中en前面的系数是显著的,说明中介变量发挥的是部分效应,如果一个显著一个不显著需要用bootstrap检验,检验如下
bootstrap r(ind_eff) r(dir_eff),reps(1000):sgmediation y mv(tec) iv(en) cv(con res)
*mv里面是中介变量 iv是自变量 cv是控制变量
中介效应方法二
逐步回归
ssc install reghdfe
ssc install ftools
reghdfe y res en con,absorb(id year) vce(cluster id)
*在这里假设tec为中介变量,en的核心解释变量
est store m1
reghdfe tec res en con,absorb(id year) vce(cluster id)
est store m2
在这里插入图片描述

reghdfe y tec res en con,absorb(id year) vce(cluster id)
在这里插入图片描述

est store m3
esttab m1 m2 m3 using out.doc,mtitles r2(%6.2f) ar2(%6.2f)
*结果主要看第二步en前的系数是否显著和第三步tec前面的系数是否显著,两个都显著说明存在中介效应
如果一个显著一个不显著需要用bootstrap检验,检验如下
bootstrap r(ind_eff) r(dir_eff),reps(1000):sgmediation2 y mv(tec) iv(en) cv(con res)
sobel检验
net install sgmediation2, from(“https://tdmize.github.io/data/sgmediation2”)
*安装命令
Sgmediation2 y, mv(tec) iv(en) cv(con res) *cv里面不能用i.id,要手工产生
tab id,gen(id) *生成个体虚拟变量
ssgmediation2 y,mv( tec ) iv( en ) cv( con res id1-id30) quietly
*quietly表示不显示逐步回归
自助法
bootstrap r(ind_eff) r(dir_eff),reps(1000) bca:sgmediation2 y mv(tec) iv(en) cv(con res id1-id30)
*(ind_eff)表示间接效应,(dir_eff)表示直接效应,结果包括0就显著,不包括0就不显著
12.门槛模型
xthreg y c1 c2 c3 c4, rx(x1) qx(x2) thnum(1) bs(300) trim(0.01) grid(100)
其中,y表示被解释变量,c1-c4表示控制变量,rx表示核心解释变量,qx表示门槛变量,thnum表示门槛个数bs表示自举次数(理论上越多越好,但是考虑到效率,一般设置成300以上),trim表示门限分组内异常值去除的比例(一般选0.01或0.05),grid表示样本网格计算的网格数(一般设置成100或300),r表示用聚类稳健标准误
单一门槛
xthreg y c1 c2, rx(x1) qx(x2) thnum(1) bs(300) trim(0.01) grid(100) r
双门槛
xthreg y c1 c2, rx(x1) qx(x2) thnum(2) bs(300 300) trim(0.01 0.01)grid(100) r
三门槛
xthreg y c1 c2, rx(x1) qx(x2) thnum(3) bs(300 300 300) trim(0.01 0.01 0.01) grid(100) r
在这里插入图片描述
*这里的p不显著说明不存在门槛值
三门槛结果解读
在这里插入图片描述
*如果p都小于0.1,那么0.3685第一门槛值 0.1620 第二 0.2153第三,门槛值从小到大看是第几个门槛
在这里插入图片描述

*假设p值小于0.1,表示在门槛值小于第一门槛值时en对解释变量y的影响为0.31,介于第一和第二门槛值是en对y的影响是0.818,以此类推
13.Arcgis画图
蓝色➕插入地图信息
在这里插入图片描述
右键——连接
在这里插入图片描述
选择连接的文件
在这里插入图片描述
以NAME为连接字段 ——选择连接的文件
在这里插入图片描述
打开数据属性表可以看看连接情况
右键——点击属性——标注——字段选择(name)——应用
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
符号系统——数量

在这里插入图片描述
值(要画的数据) 色带自己选择喜欢的

在这里插入图片描述
怎么把局部的放大呢(显示南海这些区域)
插入——数据框——复制行政区 国界线——布局视图
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
插入——文本——输入标题名字
布局试图下——插入——比例尺——插入——指北针
在这里插入图片描述
14.怎么选择想要的省份
选择+shift(在知道地理位置的时候)
打开属性表——NAME_——获取唯一值——大写的IN依次点击省份名字用英文逗号隔开——右键——选择——所选建立图层
在这里插入图片描述
在这里插入图片描述
15.空间引力模型

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/324751.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PyQt5批量生成Checkbox及批量检查Checkbox的勾选状态

批量生成Checkbox并添加到TableWidget中 for i in range(10):checkbox_i QCheckBox(fCheckbox_{i}) # 生成Checkbox并命名为Checkbox_iself.ui_1.tableWidget_1.setCellWidget(i,1,checkbox_i) 批量检查勾选状态 # 批量生成Checkbox并存入列表 list_Checkbox_1 [] for …

Springboot整合飞书向群组/指定个人发送消息/飞书登录

Springboot整合飞书向群组发送消息 飞书开放平台创建企业自建应用 添加应用能力-机器人 创建完成后,进入应用详情页,可以在首页看到 App Id 和 App Secret 在飞书pc端创建一群机器人 此处可以拿到该机器人的webhook地址,通过https的方式,也可以调用发送…

[Markdown]是时候该学学使用markdown写文章了

💕💕💕欢迎各位来到我的博客,今天我们的主题是markdown,你将在这里学习到最全的markdown知识💕💕💕 你还在使用富文本编辑器写文档或文章吗? 你还在用word一点一点地进行…

ROS2 工作空间

文章目录 ROS2 工作空间创建工作空间自动安装依赖编译工作空间设置环境变量参考链接 ROS2 工作空间 工作空间可以简单理解为工程目录。 ROS 系统中一个典型的工作空间结构如图所示: dev_ws: 根目录,里面会有四个子目录(子空间&a…

VS2019下使用MFC完成科技项目管理系统

背景: (一)实验目的 通过该实验,使学生掌握windows程序设计的基本方法。了解科技项目组织管理的主要内容和管理方面的基本常识,熟练应用数据库知识,通过处理过程对计算机软件系统工作原理的进一步理解&…

【valse 2024】开幕式内容汇总

提示:需要完整版ppt请私信 文章目录 一、大会主旨报告主旨报告-1:大模型时代的机遇和挑战主旨报告-2:以深度学习框架为牵引促进自主 AI生态发展主旨报告-3:从洞穴的影子到智能的光辉--连接和交互方式的改变塑造未来生活 (未完成) 二、大会特邀报告1:图像生成和视频生…

【好困】磁场里的瞌睡虫:地磁暴真的会让我们感到疲倦吗?

【好困】磁场里的瞌睡虫:地磁暴真的会让我们感到疲倦吗? 写在最前面地磁暴真的会让我们感到疲倦吗?一探究竟地磁暴是什么?地磁暴如何影响人体?结论 🌈你好呀!我是 是Yu欸 🌌 2024每…

凸优化理论学习一|最优化及凸集的基本概念

文章目录 一、优化问题(一)数学优化(二)凸优化 二、凸集(一)一些标准凸集(二)保留凸性的运算(三)正常锥和广义不等式(四)分离和支撑超…

dos命令改3389端口,通过dos命令更改3389端口的操作

要使用DOS命令更改3389端口,通常涉及修改Windows注册表中的相关键值。请注意,直接操作注册表具有一定的风险,因此在进行任何更改之前,请确保您了解正在进行的操作,并已经采取了适当的备份措施。 以下是一个基本的操作步…

原子学习笔记4——GPIO 应用编程

一、应用层如何操控 GPIO 与 LED 设备一样,GPIO 同样也是通过 sysfs 方式进行操控,进入到/sys/class/gpio 目录下,如下所示: gpiochipX:当前 SoC 所包含的 GPIO 控制器,我们知道 I.MX6UL/I.MX6ULL 一共包…

Threejs Shader动态修改Merge合并几何体中单个Mesh的颜色

目录 Merge合并 现象 思路 实现 为单个geometry添加映射 通过id检索Merge后的Geometry映射属性,获取顶点坐标 onBeforeCompile修改编译前材质的着色代码 编译前材质的顶点着色代码 编译前材质的片元着色代码 着色器代码 注意 效果 Merge合并 mergeBuf…

redis深入理解之数据存储

1、redis为什么快 1)Redis是单线程执行,在执行时顺序执行 redis单线程主要是指Redis的网络IO和键值对读写是由一个线程来完成的,Redis在处理客户端的请求时包括获取(socket 读)、解析、执行、内容返回 (socket 写)等都由一个顺序串行的主线…

sqli-labs第一关

1、提示我们需要传递一个id的参数 ?id1 2、判断是什么类型的注入(字符or整形)结果:存在字符型注入 ?id1 ?id1 -- 3、使用联合查询,查看有几列。结果:有3列 ?id1 order by 4 -- 4、查看这3列中哪几列会在页面显…

Lombok介绍、使用方法和安装

目录 1 Lombok背景介绍 2 Lombok使用方法 2.1 Data 2.2 Getter/Setter 2.3 NonNull 2.4 Cleanup 2.5 EqualsAndHashCode 2.6 ToString 2.7 NoArgsConstructor, RequiredArgsConstructor and AllArgsConstructor 3 Lombok工作原理分析 4. Lombok的优缺点 5. 总结 1 …

QueryPerformanceCounter实现高精度uS(微妙)延时

参考连接 C# 利用Kernel32的QueryPerformanceCounter封装的 高精度定时器Timer_kernel32.dll queryperformancecounter-CSDN博客https://blog.csdn.net/wuyuander/article/details/111831973 特此记录 anlog 2024年5月11日

土地档案管理关系参考论文(论文 + 源码)

【免费】javaEE土地档案管理系统.zip资源-CSDN文库https://download.csdn.net/download/JW_559/89296786 土地档案管理关系 摘 要 研究土地档案管理关系即为实现一个土地档案管理系统。土地档案管理系统是将现有的历史纸质档案资料进行数字化加工处理,建成标准化的…

探索Linux:深入理解各种指令与用法

文章目录 cp指令mv指令cat指令more指令less指令head指令tail指令与时间相关的指令date指令 cal指令find指令grep指令zip/unzip指令总结 上一个Linux文章我们介绍了大部分指令,这节我们将继续介绍Linux的指令和用法。 cp指令 功能:复制文件或者目录 语法…

基于Qt的Model-View显示树形数据

目标 用qt的模型-视图框架实现树型层次节点的显示,从QAbstractItemModel派生自己的模型类MyTreeItemModel,用boost::property_tree::ptree操作树型数据结构,为了演示,此处只实现了个只读的模型 MyTreeItemModel的定义 #pragma o…

张驰咨询:AI与六西格玛——携手共进,非彼此替代

在历史的洪流中,技术与方法的演进如同波澜壮阔的画卷,不断书写着人类文明的篇章。六西格玛,作为一种追求极致品质与效率的方法论,是现代工业文明中的瑰宝。而当我们面对AI(人工智能)这一新时代的产物时&…

[leetcode] 68. 文本左右对齐

文章目录 题目描述解题方法贪心java代码复杂度分析 题目描述 给定一个单词数组 words 和一个长度 maxWidth ,重新排版单词,使其成为每行恰好有 maxWidth 个字符,且左右两端对齐的文本。 你应该使用 “贪心算法” 来放置给定的单词&#xff…