ChatGPT火爆,背后的核心到底是什么?

点击上方“小麦大叔”,选择“置顶/星标公众号”

福利干货,第一时间送达

2022年12月份的时候,ChatGPT还只是个被人各种撩的聊天工具。但进入2023年后,已经向着效率工具迈进了。

微软宣布正和ChatGPT开发团队OpenAI进行洽谈,投资百亿美元,并计划把这个工具整合到云服务、搜索引擎、甚至office中。

海外高校、学术机构,也兴起了关于用ChatGPT写论文是否合规的大讨论;咨询公司也开始担忧是否会被抢饭碗。

毫无疑问,ChatGPT的应用热情,已经被点燃;应用场景也不断拓展。但ChatGPT并不是一蹴而就,以更广阔的的视野来看,这背后是AIGC“智慧涌现”的大浪潮

那么,AIGC的发展节点有哪些?企业竞争靠什么?

AIGC是如何一步步突破的?

AI懂创作、会画画,可以说是人工智能的一个“跨越式”提升。虽然人工智能在生活中不断普及,比如我们习惯了机器代替人去搬运重物、制造精密的产品、完成复杂的计算等等。但是,如果人工智能更接近人,那就必须具备人类“创作”的能力。这就是AIGC的意义。

AI能力的提升,并不是一蹴而就,而大部分则经历了“模型突破-大幅提升-规模化生产-遇到障碍-再模型突破-大幅提升”的循环发展。而要实现落地、走进人类生活,则必须具备“规模化生产”的能力,在资源消耗、学习门槛等方面大幅降低到平民化。

比如以AI画画为例,则经历了三个关键节点:

第一个节点,早期突破:2014年,对抗生成网络(GAN)诞生,真正“教会”AI自己画画。

GAN包含两个模型,一个是生成网络G、一个是判别网络D。G负责把接收到的随机噪声生成图片,D则要判断这张图是G画的、还是现实世界就存在的。G、D互相博弈,能力也不断提升,而当D不再能判断出G生成的图片时,训练就达到了平衡。

GAN的开创性在于,精巧地设计了一种“自监督学习”方式,跳出了以往监督学习需要大量标签数据的应用困境,可以广泛应用于图像生成、风格迁移、AI艺术和黑白老照片上色修复。

第二个节点,大幅提升:2020年,一篇关于扩散模型(Diffusion Model)的学术论文,大幅提升AI的画画水平。

扩散模型的原理是“先增噪后降噪”。首先给现有的图像逐步施加高斯噪声,直到图像被完全破坏,然后再根据给定的高斯噪声,逆向逐步还原出原图。当模型训练完成后,输入一个随机的高斯噪声,便能“无中生有”出一张图像了。

这样的设计大大降低了模型训练难度,突破了GAN模型的局限,在逼真的基础上兼具多样性,也就能够更快、更稳定的生成图片。

第三个节点,批量生产:2022年夏天诞生的Stable Diffusion,让高大上的学术理论变得“接地气”。

去年8月,Stability AI将扩散过程放到更低维度的潜空间(Latent Diffusion),从而开发出了Stable Diffusion模型。这个模型带来的提升,在于资源消耗大幅降低,消费级显卡就可以驱动的,可以操作也更为方便,普通人也可以体会到人工智能惊艳的创作能力。而且开发团队还把所有代码、模型和权重参数库都进行了开源,践行了Geek的共享精神、去中心化主义。

门槛降低、效果提升,因此,大受欢迎。发布10天后,活跃数据达到了每天1700万张,如果都用A4纸打印出来叠一起,相当于一座52层高的大楼。

共享,也是Stability AI的另一特色。在开源社区中,除了更小的内存和更快的速度,Stable Diffusion收获了更完善的指南与教程、共享提示词、新UI,也依靠集体的智慧,走进了Photoshop、Figma等经典软件,汇入创作者们的既有工作流中。可谓是,依靠群众、回馈群众。

从技术实现突破、到技术提升、再到规模化降低门槛,AI创作能力也不断提升。2022年10月,美国一名男子用AI绘画工具Midjourney,生成了一幅名为《太空歌剧院》的作品,并获得了第一名。这引起了一波不小的争论,也终于形成了一条新赛道。于是,2022年以AI绘画为代表的各种生成式AI工具,如雨后春笋般疯狂冒尖,比如盗梦师、意间AI、6pen、novelAI等等。

而在文本AI领域也是如此。如今大火的ChatGPT则是基于GPT3.5模型,已经迭代了4次。而对话一次的平均成本为0.01-0.2美元,也就是六毛到一块钱人民币,成本依然需要不断降低。但整体而言,无论画画、还是聊天,AI已经体现出智慧涌现。

如何成为浪潮宠儿?

Stability AI的创始人Emad认为,图像才是杀手级应用。

图像模型可以迅速创造,并引导人们迅速消费,同时又能以较低成本快速整合到不同领域,从而快速普及,掀起浪潮。而事实上,确实许多创业者涌入了这些领域。AIGC成为了币圈之后的投资新焦点。在 GPT-3 发布的两年内,风投资本对 AIGC 的投资增长了四倍,在 2022 年更是达到了 21 亿美元。

20f15be9995ec0d6542dbe1c02cca3c2.jpeg

公司增多,投资增多,但并不是每家企业都能活得很好。比如2022年底,仅创立4个月的AI绘画公司StockAI就停止了运营。公司CEO表示,主要是因为商业化模式不成熟,目前的付费用户群体无法覆盖高昂的运营成本。虽然他也表明会在今年1月份推出全新的平台,但从透露的信息来看,新平台已不会有需要大量算力的AI图片生成功能了。

那么,什么样的企业,才是这波浪潮的“宠儿”?

首先,无疑是掌握核心前沿技术的行业引领者。全球TOP3的人工智能研究机构,都在各出奇招、争夺AIGC主导地位。

OpenAI是文字生成领域的领航员。不光吸引了“生成对抗网络之父”Ian Goodfellow加盟,还早早获得了微软的10亿美元投资。从GPT到GPT3.5,OpenAI不断迭代,也不断带给行业惊喜。这一次的ChatGPT更加获得了微软的认可。而通过开放GPT-3受控API的模式,OpenAI也将赋能更多公司和创业者。

DeepMind是通用型AI的探路人。2016年,AlphaGo击败人类围棋的最高代表韩国棋手李世石,Go背后正是谷歌旗下的DeepMind。但DeepMind的目标并不是下棋,而是通用型AI,比如能预测蛋白质结构的AlphaFold、能解决复杂数学计算的AlphaTensor等等。但这些AI始终面临着一个瓶颈,即无法像人类一样进行“无中生有”的创作。

这两年,DeepMind终于向通用型AI又推近了一步。在对话机器人Sparrow、剧本创作机器人Dramatron等背后的语言大模型中找到灵感,构建了会聊天、会干活、会玩游戏的Gato。

Meta在加速AI的商业化落地。重组调整AI部门,将其分布式地下放到各实际业务中,而FAIR被并入元宇宙核心部门Reality Labs Research,成为新场景探索者的一员。

也许同行相轻,Meta首席人工智能科学家Yann LeCun对ChatGPT的评价并不高,他认为从底层技术上看,ChatGPT并不是什么创新性、革命性的发明,除了谷歌和Meta,至少有六家初创公司拥有类似的技术。

当被问及Meta的AI愿景时,LeCun为FAIR画下了“生成艺术”的大饼。他提出,Facebook上有1200万商铺在投放广告,其中多是没有什么资源定制广告的夫妻店,Meta将通过能够自动生成宣传资料的AI帮助他们做更好的推广。

其次,另一类宠儿,则是押对应用场景的企业们,在“绘画”之外吸纳了不少资本支持与人才投入。

在所有内容生成式AI中,输出文字和音乐的已经先一步找到了财富密码。最早出现的AI生成文字在遍历了写新闻稿、写诗、写小剧本等颇受关注的应用方式后,终于在营销场景找到了能够稳定变现的商业模式,成为写作辅助的效率工具,帮助从业者写邮件、文案、甚至策划。专注于音乐的LifeScore,则让人工智能学会了即时编曲,按照场景、长度的需要,组织艺术家同事人工创作、演奏的音乐素材,在人类的创作流程中找到了自己的位置。

能够互动的聊天机器人,则在客服和游戏这两个相去甚远的行业分别“打工”。区别于当下只会提供预设问题解答,有时还会答非所问的“智能客服”,真正的AI需要结合用户的行为和上下文来理解人类的真正意图。在游戏领域,AI则被用来协助人类,高效地创造内容丰富、体验良好的游戏内容,从而延长用户的游戏时间。

显然,宠儿是少的。而经历了过去一年多“科技股大回落”后,投资者们也谨慎一些了,当下的AIGC虽然很好,但等大模型出来也许更香。

大模型,也许是企业比拼的护城河

模型是人工智能的灵魂,本质上它是一套计算公式和数学模型。“参数”可以看做是模型里的一个个公式,这意味着,参数量越大,模型越复杂,做出来的预测就越准确。

小模型就像“偏科的机器”,只学习针对特定应用场景的有限数据,“举一反三”能力不足,一些智能产品被用户调侃为“人工智障”的情况时有发生。

大模型就是参数量极大的模型,目前业界主流的AIGC模型都是千亿级、万亿级参数量的水平。通过学习各行各业各类数据,除了能给出相较于小模型更准确的预测结果之外,它也展现出了惊人的泛化能力、迁移能力,产出内容质量更高、更智能,这也是当前AIGC工具让人眼前一亮的原因。

而大模型的快速发展,对行业发展起到了明显的推动作用。例如ChatGPT是基于GPT-3模型进行优化所产生的,引领AI绘画发展的DALL·E 2也离不开GPT-3的贡献。类似的还有Deepmind的Chinchilla、百度的文心大模型等等。

大模型,很大概率是行业淘汰与否的判断要素。

首先,训练数据量大,OpenAI为了让GPT-3的表现更接近人类,用了45TB的数据量、近 1 万亿个单词来训练它,大概是1351万本牛津词典。

21abf794db9bdda3871a50a07fac9658.png

GPT-3 训练数据集一览

这就带来了两个问题:巨大的算力需求与资金消耗。训练和运行模型都需要庞大的算力,有研究估测,训练 1750 亿参数语言大模型 GPT-3,需要有上万个 CPU/GPU 24 小时不间输入数据,所需能耗相当于开车往返地球和月球,且一次运算就要花费450万美元。

国内也不例外。目前国内自研的大模型包括百度的文心大模型、阿里的M6大模型、腾讯的混元大模型,针对中文语境,国内厂商的表现要比国外大厂要好得多。而且国内的大模型发展速度也很惊人。

采用稀疏MoE结构的M6大模型,2021年3月仅1000亿参数,3个月后就达到了万亿级,又过了五个月模型参数达到了十万亿级,成为全球最大的AI预训练模型。混元模型也是万亿级别,成本大幅降低,最快用256张卡,1天内就能训练完成。而采用稠密结构(可以粗糙理解是和稀疏相比,密度更大)的文心大模型,2021年,参数规模达到2600亿。2022年,百度又先后发布了数十个大模型,其中有11个行业大模型。

这样高的研发门槛,注定目前主流的大模型多由大企业、或是背靠大企业的研究机构掌握,中小企业只能望而却步。因此,大模型,也就成为企业的“护城河”。

但进行大模型的研发只是“成功第一步”,还有三个维度的比拼,也非常重要。

一是数据资源。有研究表明,到2026年就没有更多高质量的数据可以训练AI了。此外,基于现实生活中已有的数据来训练模型只能解决一些已知问题,对于一些我们还没有发现的、潜在的、未知的问题,现在的模型未必能解决。因此有一些研究人员提出了合成数据的概念,即通过计算机程序人工合成的数据,一方面补充高质量的训练数据,另一方面填补一些极端或者边缘的案例,增加模型的可靠性。

二是绿色发展。虽然模型越大效果越好,但无限“大”下去并不经济,对自然资源消耗、数据资源都带来巨大压力。而过高的资源消耗,也不利于平民化普及。

三是应用场景。商业和纯理论研究不同,不能拿着技术的锤子,瞎找钉子,而是要结合应用来发展技术。而国内厂商要想拿出Stable Diffusion、ChatGPT这样的杀手级应用,还需要更多的思考和努力:

跳出“跑分”怪圈,找到应用场景,进行模型“瘦身”,甚至,将模型开源、形成生态,利用群众的智慧、为群众服务。

尾声

随着微软对ChatGPT的关注,产业、投资圈都热了起来,美股BuzzFeed因为要采用ChatGPT技术就实现了两天涨三倍的壮举;H股、A股也迎风而动,不少上市公司也表态具备技术积累。

躁动当然是好事儿,科技创新,就是要令人心潮澎湃。我国广阔的产业,是应用开花的土壤。但与此同时,国内的AIGC也存在着隐忧,比如高算力的芯片,如何造出来?

另一方面,科技创新,也要牢记Gartner曲线揭示的规律:萌发期→泡沫期→泡沫破裂期→稳步发展期→稳定产出期。只有躁动,没有笃定、没有低谷时的忍耐,也绝不可能成功的。

适度的泡沫,成为驱动力;过度的泡沫,也许会劣币驱逐良币。但至少目前,我们和海外相比,几乎在同一起跑线,值得充满热情的期待。

转自:远川科技评论

版权声明:本文来源网络,版权归原作者所有。版权问题,请联系删除。

—— The End ——

爆一下年终奖

2023-02-02

3db9ecb100d140fa6d3d058e552b0668.jpeg

俄罗斯自研的CPU,能用吗?

2023-02-01

3985f4708bf5b01969b57168071f158f.jpeg

入职新公司被要工资流水!这背后到底有什么猫腻?

2023-01-31

483d10179e61668bc5842b35b4086c4e.jpeg

你们都开工了,我才刚开始复盘

2023-01-30

cb2741c3d6447abf5c4ae1aaf6defbe7.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/326.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ChatGPT,背后的核心是什么?

来源:远川科技评论 作者:钟靖怡 马冰莹 编辑:董指导 2022年12月份的时候,ChatGPT还只是个被人各种撩的聊天工具。但进入2023年后,已经向着效率工具迈进了。 微软宣布正和ChatGPT开发团队OpenAI进行洽谈,投资…

带头抵制高级AI,马斯克在怕什么

Chat-GPT 和 GPT-4 给大家留下的话题实在不少,一边是大家已经开始享受着人工智能带来的便捷,各种写论文出脚本,另一头则是更多的精英人士开始对高级 AI 心存忧虑。 上个月底,据路透社的报道,有一群人工智能专家及行业…

二月安全月报 | 45亿条快递数据疑泄露,Twitter史上最大规模宕机

为了让大家更全面的了解网络安全的风险,顶象针对每月值得关注的安全技术和事件进行盘点总结。 国内安全热点 👉业务安全 男子注册上万账号薅羊毛获利13万 近日,上海市,由闵行区人民检察院提起公诉的刘某某诈骗一案开庭审理&…

最先被GPT革掉命的,大概率是你每天都在用的验证码

前段时间,有一个叫 “ Chirper ” 的互联网社区突然火了。 和普通的社区不一样,这个社区拒绝任何真实人类的进入。所有在上面发帖的,都是提前设定好角色属性的 “ 机器人 ”。 它们之中有年龄高达 300 岁的可以使用魔法和动物交流的森林女王…

“用过 Rust 后,我写 Python 的方法都变了!”

近年来,Rust 以其安全性出名,逐渐被各大科技巨头所拥抱——那么,其他主流语言是否可以参考 Rust 的编程思想呢?本文作者以 Python 为例,做了一番尝试。 原文链接:https://kobzol.github.io/rust/python/202…

如何实现在纯 Web 端完成各类 API 调试?

作者 | 张涛,携程机票研发部高级软件工程师 责编 | 夏萌 在软件开发过程中,对于各类 API 的调试工作至关重要。API 调试是验证和测试应用程序接口的有效性和正确性的关键步骤。传统的 API 调试方法通常依赖于独立的工具或桌面应用程序,限制了…

BASIC 之父出生 | 历史上的今天

整理 | 王启隆 透过「历史上的今天」,从过去看未来,从现在亦可以改变未来。 今天是 2023 年 5 月 31 日,在 1962 年的今天,伦纳德克兰罗克(Leonard Kleinrock)发表了他的第一篇论文,题为“大型通…

22字声明、近400名专家签署、AI教父Hinton与OpenAI CEO领头预警:AI可能灭绝人类!...

整理 | 屠敏 出品 | CSDN(ID:CSDNnews) 经过不到一年的时间,AI 的发展超乎所有人的想象,也大有失控的风险。 就在今天,全球部分顶尖的 AI 研究员、工程师和 CEO 就他们认为 AI 对人类构成的生存威胁发出了新…

时至 2023 年,2000 万行仍然是 MySQL 表的软限制吗?

一直有传言说,MySQL 表的数据只要超过 2000 万行,其性能就会下降。而本文作者用实验分析证明:至少在 2023 年,这已不再是 MySQL 表的有效软限制。 原文链接:https://yishenggong.com/2023/05/22/is-20m-of-rows-still-…

GPT-4 Copilot X震撼来袭!AI写代码效率10倍提升,码农遭降维打击

新智元报道 【新智元导读】GPT-4加强版Copilot来了!刚刚,GitHub发布了新一代代码生成工具GitHub Copilot X,动嘴写代码不再是梦。 微软真的杀疯了! 上周,微软刚用GPT-4升级了Office办公全家桶,还没等人们反…

FBI 花 3 年暴力破解 iPhone X 密码,竟成一场空?法院:搜查令已过期,证据无效...

整理 | 郑丽媛 出品 | CSDN(ID:CSDNnews) 很难预料到,几年前 FBI 和苹果之间那场备受关注的隐私大战,时至今日仍有余波: ▶ 2016 年,正值苹果与 FBI “剑拔弩张”时,其安全指南曾声称…

发布 21 年后,Windows XP 被破解,仅 18KB 即可离线激活

整理 | 郑丽媛 出品 | CSDN(ID:CSDNnews) 都 2023 年了,如今再提起 Windows XP,可能颇有些“时代的眼泪”的味道。 (Windows XP 经典的默认桌面壁纸) 2001 年 10 月 25 日正式登陆零售商店&…

​iPhone 14 Pro 全系降价 700 元;Gmail 之父:有了 ChatGPT,搜索引擎活不过两年了|极客头条...

「极客头条」—— 技术人员的新闻圈! CSDN 的读者朋友们早上好哇,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。 整理 | 梦依丹 出品 | CSDN(ID:CSDNnews) 一分钟速览新闻点&#…

ChatGPT陷伦理风波 “纯净版”机器人在赶来的路上

近期,AI安全问题闹得沸沸扬扬,多国“禁令”剑指ChatGPT。自然语言大模型采用人类反馈的增强学习机制,也被担心会因人类的偏见“教坏”AI。 4月6日,OpenAI 官方发声称,从现实世界的使用中学习是创建越来越安全的人工智…

快播公司已破产注销;ChatGPT 之父警告:AI 可能灭绝人类;苹果官方:618 将开启全球首次直播|极客头条...

「极客头条」—— 技术人员的新闻圈! CSDN 的读者朋友们早上好哇,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。 整理 | 梦依丹 出品 | CSDN(ID:CSDNnews) 一分钟速览新闻点&#…

AI聊天机器人ChatGPT遭破解,引发数据泄露风险

近日,一款基于人工智能技术的聊天机器人——ChatGPT遭受黑客攻击,导致用户数据泄露风险加大。这一事件引起了广泛的关注,也引发了人们对于人工智能安全性的担忧。 ChatGPT是一种被广泛应用于企业客户服务和市场营销等领域的AI聊天机器人&…

行走的代码生成器:chatGPT要让谷歌和程序员“下岗”了

就在本周,OpenAI 又发布了一个全新的聊天机器人模型 ChatGPT,作为 GPT-3.5 系列的主力模型之一。 图片来源:OpenAI 更重要的是它是完全免费公开的!所以一经发布大家立刻就玩开了——很快,网友们就被 ChatGPT 的能力所…

ChatGPT会让程序员失业?ChatGPT:“ 是友军,我不从事任何职业。

毫无疑问,ChatGPT“出圈”了。 它似乎无所不能。 许多人担忧它是否会取代自己的饭碗,唯恐自己的进步赶不上 AI 的发展。 然而,有人在试用几次之后,又算是松了口气:打工人我呀,工作算是保住啦~ 那么&…

除了ChatGPT,还有哪些AI工具会抢你“饭碗”?

1、Daft Art 人工智能专辑封面生成器 Daft Art 是独立设计师和开发者 Ahmed 所创建的服务,这项服务经过大量的数据训练,可以根据你的音乐的标题、内容来创建一系列的封面图,你可以在其中选择和你的音乐氛围接近的图。 Daft Art 能够生成的封…

Chatgpt到底有多牛?

在人工智能领域, ChatGPT可以说是最具影响力的 AI之一。从全球最大的中文搜索引擎百度,到中国最大的新闻聚合网站人民日报,再到中国最大的知识问答网站知乎, ChatGPT都有不俗的表现。而在 ChatGPT被美国《时代周刊》评为“人工智能…