凸优化理论学习二|凸函数及其相关概念

系列文章目录

凸优化理论学习一|最优化及凸集的基本概念

文章目录

  • 系列文章目录
  • 一、凸函数
    • (一)凸集
    • (二)凸函数的定义及举例
    • (三)凸函数的证明
      • 1、将凸函数限制在一条直线上
      • 2、判断函数是否为凸函数的一阶条件
      • 3、判断函数是否为凸函数的二阶条件
    • (四)下水平集和表观
    • (五)詹森不等式
  • 二、函数的保凸运算
    • (一)证明一个函数是凸函数
    • (二)保留凸性的运算
      • 1、非负缩放、总和、积分
      • 2、与仿射函数的复合
      • 3、逐点最大值
      • 4、逐点取上界
      • 5、取下确界
      • 6、与标量函数复合
      • 7、与向量函数复合
  • 三、构造性凸分析
  • 四、透视与共轭
    • (一)透视函数
    • (二)共轭函数
  • 五、拟凸性
    • (一)拟凸函数(quasiconvex function) 定义
    • (二)常见的拟凸、拟凹、拟线性函数
    • (三)拟凸函数的性质


一、凸函数

(一)凸集

S S S n n n维欧氏空间 R n R^n Rn中一个集合,若对 S S S中任意两点,连接他们的线段仍属于 S S S;换言之,对 S S S中任意两点 x ( 1 ) x^{(1)} x(1) x ( 2 ) x^{(2)} x(2)及每个实数 λ ∈ [ 0 , 1 ] \lambda\in[0,1] λ[0,1],都有:
λ x ( 1 ) + ( 1 − λ ) x ( 2 ) ∈ S \lambda x^{(1)}+(1-\lambda)x^{(2)}\in S λx(1)+(1λ)x(2)S
则称 S S S为凸集,其中 x ( 1 ) x^{(1)} x(1) x ( 2 ) x^{(2)} x(2)表示向量, λ x ( 1 ) + ( 1 − λ ) x ( 2 ) \lambda x^{(1)}+(1-\lambda)x^{(2)} λx(1)+(1λ)x(2)称为 x ( 1 ) x^{(1)} x(1) x ( 2 ) x^{(2)} x(2)的凸组合。

(二)凸函数的定义及举例

S S S n n n维欧氏空间 R n R^n Rn中的非空凸集, f f f是定义在 S S S上的实函数,如果对任意的 x , y ∈ S x,y\in S x,yS 0 ≤ θ ≤ 1 0\leq \theta \leq 1 0θ1,有:
f ( θ x + ( 1 − θ ) y ) ≤ θ f ( x ) + ( 1 − θ ) f ( y ) f(\theta x+(1-\theta)y)\leq\theta f(x)+(1-\theta)f(y) f(θx+(1θ)y)θf(x)+(1θ)f(y)
则称 f f f S S S上的凸函数。(这里的凸函数与高数里面定义的凸函数则恰恰相反。)

  • 如果 -f 是凸的,则 f 是凹的
  • 当不需要满足等号条件时, f f f为严格凸函数
    在这里插入图片描述

标量/一维空间内的凸函数:

  • 仿射集:在实数域的所有 a x + b , a , b ∈ R ax+b,a,b\in R ax+b,a,bR
  • 指数函数: e a x , a ∈ R e^{a x},a\in R eax,aR
  • 幂函数: x α , α ≥ 1 x^{\alpha},\alpha\geq1 xα,α1 α ≤ 0 \alpha\leq0 α0
  • 幂函数的绝对值: ∣ x ∣ p , p ≥ 1 |x|^p,p\geq1 xp,p1
  • 负熵函数: x l o g x xlogx xlogx,定义域 R + + R_{++} R++

标量/一维空间内的凹函数:

  • 仿射集:在实数域的所有 a x + b , a , b ∈ R ax+b,a,b\in R ax+b,a,bR
  • 幂函数: x α , 0 ≤ α ≤ 1 x^{\alpha},0\leq\alpha\leq1 xα,0α1
  • 熵函数: − x l o g x -xlogx xlogx,定义域 R + + R_{++} R++

n 维欧几里得空间的凸函数:

  • 仿射函数: f ( x ) = a T x + b f(x)=a^Tx+b f(x)=aTx+b
  • 任意范式: ∣ ∣ x ∣ ∣ p = ( ∣ x 1 ∣ p + . . . ∣ x n ∣ p ) 1 / p f o r p ≥ 1 ||x||_p=(|x_1|^p+..._|x_n|^p)^{1/p} \ for\ p\geq1 ∣∣xp=(x1p+...xnp)1/p for p1 ∣ ∣ x ∣ ∣ ∞ = m a x { ∣ x 1 ∣ , . . . , ∣ x 2 ∣ } ||x||_∞=max\{|x_1|,...,|x_2|\} ∣∣x=max{x1,...,x2}
  • 平方和: ∣ ∣ x ∣ ∣ 2 2 = x 1 2 + . . . + x n 2 ||x||^2_2=x_1^2+...+x_n^2 ∣∣x22=x12+...+xn2
  • 最大值函数: m a x ( x ) = m a x { x 1 , x 2 , . . . , x n } max(x)=max\{x_1,x_2,...,x_n\} max(x)=max{x1,x2,...,xn}
  • softmax函数或log-sum-exp函数: l o g ( e x p x 1 + . . . + e x p x n ) log(exp\ x_1+...+exp\ x_n) log(exp x1+...+exp xn)

矩阵空间上的凸函数:

  • 仿射函数: f ( X ) = t r ( A T X ) + b = ∑ i = 1 m ∑ j = 1 n A i j X i j + b f(X)=tr(A^TX)+b=\sum_{i=1}^m\sum_{j=1}^nA_{ij}X_{ij}+b f(X)=tr(ATX)+b=i=1mj=1nAijXij+b,其中 A ∈ R m × n , b ∈ R A\in R^{m\times n},b\in R ARm×n,bR
  • 谱范数(最大奇异值)是凸的: f ( X ) = ∣ ∣ X ∣ ∣ 2 = σ m a x ( X ) = ( λ m a x ( X T X ) ) 1 / 2 f(X)=||X||_2=\sigma_{max}(X)=(\lambda_{max}(X^TX))^{1/2} f(X)=∣∣X2=σmax(X)=(λmax(XTX))1/2
  • 对数行列式: X ∈ S + + n , f ( X ) = l o g d e t X X\in S^n_{++},f(X)=log\ det\ X XS++n,f(X)=log det X

(三)凸函数的证明

在判断函数是凸函数还是凹函数的时候,不管是一阶还是二阶条件,必须满足函数f的定义域domf必须是凸集这个前提条件

1、将凸函数限制在一条直线上

如果能够把一个凸函数限制到一条直线上后仍是凸的,就可以判定这个凸函数是凸的:

  • 数学表达式理解:函数 f : R n → R f:R^n\rightarrow R f:RnR是凸函数当且仅当对于任意的 x ∈ d o m f x\in dom \ f xdom f和任意向量 v ∈ R n v\in R^n vRn,函数 g ( t ) = f ( x + t v ) , d o m g = { t ∣ x + t v ∈ d o m f } g(t)=f(x+tv),dom\ g=\{t|x+tv\in dom\ f\} g(t)=f(x+tv),dom g={tx+tvdom f}为凸函数。
  • 通俗理解:将n维空间的函数映射到一维平面上,问题就转换为判断一维空间中的函数 g ( t ) g(t) g(t)是否为凸函数。

应用示例:
在这里插入图片描述

2、判断函数是否为凸函数的一阶条件

假设函数 f f f可微,其梯度 Δ f \Delta f Δf在开集定义域中处处存在,则函数f是凸函数的充要条件是定义域为凸集,且对任意 x , y ∈ d o m f x,y\in dom\ f x,ydom f,下式成立:
f ( y ) ≥ f ( x ) + Δ f ( x ) T ( y − x ) f(y)\geq f(x)+\Delta f(x)^T(y-x) f(y)f(x)+Δf(x)T(yx)
梯度定义为:
Δ f ( x ) = ( ∂ f ( x ) ∂ x 1 , ∂ f ( x ) ∂ x 2 , . . . , ∂ f ( x ) ∂ x n ) \Delta f(x)=(\frac{\partial f(x)}{\partial x_1},\frac{\partial f(x)}{\partial x_2},...,\frac{\partial f(x)}{\partial x_n}) Δf(x)=(x1f(x),x2f(x),...,xnf(x))
在这里插入图片描述

3、判断函数是否为凸函数的二阶条件

假设函数 f f f二阶可微,则对于函数 f f f的开集定义域dom内的任意一点,它的Hessian矩阵或者二阶导数 Δ 2 f \Delta^2f Δ2f存在,函数 f f f是凸函数的充要条件是其Hessian矩阵为半正定矩阵:
Δ 2 f ( x ) i j = ∂ 2 f ( x ) ∂ x i ∂ y j , i , j = 1 , . . . , n , Δ 2 f ( x ) ≥ 0 , ∀ x ∈ d o m f \Delta^2 f(x)_{ij}=\frac{\partial^2 f(x)}{\partial x_i\partial y_j},i,j=1,...,n,\Delta^2 f(x)\geq0,∀x\in dom\ f Δ2f(x)ij=xiyj2f(x),i,j=1,...,n,Δ2f(x)0,xdom f

其梯度 Δ f \Delta f Δf在开集定义域中处处存在,则函数f是凸函数的充要条件是定义域为凸集,且对任意 x , y ∈ d o m f x,y\in dom\ f x,ydom f,下式成立:
f ( y ) ≥ f ( x ) + Δ f ( x ) T ( y − x ) f(y)\geq f(x)+\Delta f(x)^T(y-x) f(y)f(x)+Δf(x)T(yx)
梯度定义为:
Δ f ( x ) = ( ∂ f ( x ) ∂ x 1 , ∂ f ( x ) ∂ x 2 , . . . , ∂ f ( x ) ∂ x n ) \Delta f(x)=(\frac{\partial f(x)}{\partial x_1},\frac{\partial f(x)}{\partial x_2},...,\frac{\partial f(x)}{\partial x_n}) Δf(x)=(x1f(x),x2f(x),...,xnf(x))

应用示例:
在这里插入图片描述

(四)下水平集和表观

Epigraph和α-sublevel set的联系是对于任意一个t,都对应一个α-sublevel set。

下水平集α-sublevel set:

  • 函数 f : R n → R f:R^n\rightarrow R f:RnR的α-下水平集定义为:
    C α = { x ∈ d o m f ∣ f ( x ) ≤ α } C_{\alpha}=\{x\in dom\ f|f(x)\leq\alpha\} Cα={xdom ff(x)α}
  • 对于任何的值,凸函数的下水平集仍然是凸集,但反之不一定正确,即某函数的所有下水平集都是凸集,但是这个函数可能不是凸函数

表观Epigraph:

  • f 是凸的当且仅当其表观是凸集
  • 函数 f : R n → R f:R^n\rightarrow R f:RnR的图像定义为:(是 R n + 1 R^{n+1} Rn+1空间的一个子集)
    { ( x , f ( x ) ) ∣ x ∈ d o m f } \{(x,f(x))|x\in dom\ f\} {(x,f(x))xdom f}
  • 函数 f : R n → R f:R^n\rightarrow R f:RnR的表观定义为:
    e p i f = { ( x , t ) ∈ R t + 1 ∣ x ∈ d o m f f ( x ) ≤ t } epif=\{(x,t)\in R^{t+1}|x\in dom\ f\,f(x)\leq t\} epif={(x,t)Rt+1xdom ff(x)t}
    在这里插入图片描述

(五)詹森不等式

基本不等式:如果 f f f是凸的,对于 x , y ∈ d o m f , 0 ≤ θ ≤ 1 x,y\in dom\ f,0\leq\theta\leq1 x,ydom f0θ1,有:
f ( θ x + ( 1 − θ ) y ) ≤ θ f ( x ) + ( 1 − θ ) f ( y ) f(\theta x+(1-\theta)y)\leq\theta f(x)+(1-\theta)f(y) f(θx+(1θ)y)θf(x)+(1θ)f(y)

应用示例:在这里插入图片描述在这里插入图片描述

拓展:如果 f f f是凸的,并且 z z z d o m f dom f domf上的一个随机向量,则有:
f ( E z ) ≤ E f ( z ) f(Ez)\leq Ef(z) f(Ez)Ef(z)
基本不等式在离散分布的特殊情况:
p r o b ( z = x ) = θ , p r o b ( z = y ) = 1 − θ prob(z=x)=\theta,\ prob(z=y)=1-\theta prob(z=x)=θ, prob(z=y)=1θ

二、函数的保凸运算

(一)证明一个函数是凸函数

根据凸优化理论学习一|最优化及凸集的基本概念可知:证明集合 C 是凸集的方法:

  • 基于定义:如果 x 1 , x 2 ∈ C , 0 ≤ θ ≤ 1 x_1,x_2\in C,0\leq\theta\leq 1 x1,x2C,0θ1,则有 θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1+(1-\theta)x_2\in C θx1+(1θ)x2C
  • 使用凸函数;
  • 表明 C 是通过保留凸性的操作从简单凸集(超平面、半空间、范数球……)获得的,这里保留凸性的操作有:交运算、仿射映射、透视函数、线性分数函数等。
  • 基于定义(通常通过将凸函数限制在一条直线上来简化)
  • 基于凸函数的一、二阶条件
  • 证明函数f是通过保留凸性的操作从简单的凸函数获得的,这里保留凸性的操作有:非负加权和、与仿射函数的复合、逐点极大值和上确值、与标量或向量函数的复合、取下确界、透视函数等。

(二)保留凸性的运算

1、非负缩放、总和、积分

非负倍数: 如果 f f f是凸函数,且 α ≥ 0 \alpha\geq 0 α0,则 α f \alpha f αf是凸函数

和: 如果 f 1 , f 2 f_1,f_2 f1,f2均为凸函数,则 f 1 + f 2 f_1+f_2 f1+f2也为凸函数

无穷总和: 如果 f 1 , f 2 , . . . f_1,f_2,... f1,f2,...均为凸函数,则 ∑ i = 1 ∞ f i \sum_{i=1}^∞f_i i=1fi也为凸函数

积分: 如果 f ( x , α ) f(x,\alpha) f(x,α)对于每一个 α ∈ A \alpha\in A αA是凸函数,那么 ∫ α ∈ A f ( x , α ) d α \int_{\alpha\in A} {f(x,\alpha)} \,{\rm d}\alpha αAf(x,α)dα也为凸函数

2、与仿射函数的复合

具有仿射函数的(预)组合:如果 f f f 是凸函数,则 f ( A x + b ) f (Ax + b) f(Ax+b) 也是凸函数。即自变量先进行仿射变换,再代入函数后仍会保持凸性。

证明:
在这里插入图片描述

  • 线性不等式的对数障碍函数: f ( x ) = − ∑ i = 1 m l o g ( b i − a i T x ) , d o m f = { x ∣ a i T < b , i = 1 , 2 , . . . , m } f(x)=-\sum_{i=1}^m log(b_i-a_i^Tx),dom \ f=\{x|a_i^T<b,i=1,2,...,m\} f(x)=i=1mlog(biaiTx),dom f={xaiT<b,i=1,2,...,m}
  • 仿射函数的任意范数: f ( x ) = ∣ ∣ A x + b ∣ ∣ f(x)=||Ax+b|| f(x)=∣∣Ax+b∣∣

3、逐点最大值

f 1 , f 2 , . . . , f m f_{1},f_{2},...,f_{m} f1,f2,...,fm是凸函数,则 f ( x ) = m a x { f 1 , f 2 , . . . , f m } f(x)=max\{f_{1},f_{2},...,f_{m}\} f(x)=max{f1,f2,...,fm}是凸函数。

证明:(以两个函数为例)
在这里插入图片描述

  • 分段线性函数: f ( x ) = m a x i = 1 , 2 , . . . , m ( a i T x + b i ) f(x)=\mathop{max}\limits_{i=1,2,...,m}(a_{i}^{T}x+b_{i}) f(x)=i=1,2,...,mmax(aiTx+bi)是凸函数
  • x ∈ R n x\in \R^{n} xRn的前 r r r个最大分量之和是凸函数: f ( x ) = x [ 1 ] + x [ 2 ] + . . . + x [ r ] f(x)=x_{[1]}+x_{[2]}+...+x_{[r]} f(x)=x[1]+x[2]+...+x[r] x [ i ] x_{[i]} x[i] x x x的从大到小排列的第 i i i个分量)

4、逐点取上界

如果对于每个 y ∈ A y ∈ A yA f ( x , y ) f (x, y) f(x,y) 是关于 x x x的凸函数,则 g ( x ) = s u p y ∈ A f ( x , y ) g(x) = {sup}_{y∈A} f (x, y) g(x)=supyAf(x,y) 是凸函数。

  • 集合 C C C的支撑函数: S C ( x ) = s u p y ∈ C y T x S_{C}(x)=\mathop{sup}\limits_{y\in C}y^{T}x SC(x)=yCsupyTx是凸函数
  • 集合 C C C点到给定点 x x x的最远距离: f ( x ) = s u p y ∈ C ∣ ∣ x − y ∣ ∣ f(x)=\mathop{sup}\limits_{y\in C}||x-y|| f(x)=yCsup∣∣xy∣∣
  • 对称矩阵 X ∈ S n X\in S^{n} XSn的最大特征值: λ m a x ( X ) = s u p ∣ ∣ y ∣ ∣ 2 = 1 y T X y \lambda_{max}(X)=\mathop{sup}\limits_{||y||_{2}=1}y^{T}Xy λmax(X)=∣∣y2=1supyTXy

5、取下确界

f ( x , y ) f(x,y) f(x,y)关于 ( x , y ) (x,y) (x,y)整体是凸函数, C C C是凸集,则 g ( x ) = i n f y ∈ C f ( x , y ) g(x)=\mathop{inf}\limits_{y\in C}f(x,y) g(x)=yCinff(x,y)是凸函数

x x x到凸集 S S S的距离 d i s t ( x , S ) = i n f y ∈ S ∣ ∣ x − y ∣ ∣ dist(x,S)=\mathop{inf}\limits_{y\in S}||x-y|| dist(x,S)=ySinf∣∣xy∣∣是凸函数
在这里插入图片描述

6、与标量函数复合

给定函数 g : R n → R g:\R^{n}\rightarrow \R g:RnR h : R → R h:\R \rightarrow\R h:RR,有 f ( x ) = h ( g ( x ) ) f(x)=h(g(x)) f(x)=h(g(x)),有以下4条结论成立:

  • h为凸, h ~ \tilde{h} h~不降, g g g为凸,则 f f f为凸
  • h为凸, h ~ \tilde{h} h~不增, g g g为凹,则 f f f为凸
  • h为凹, h ~ \tilde{h} h~不降, g g g为凹,则 f f f为凹
  • h为凹, h ~ \tilde{h} h~不增, g g g为凸,则 f f f为凹

h ~ \tilde{h} h~ h h h 的 Legendre 变换,对于一个函数 h : R → R h:\R \rightarrow\R h:RR,它的Legendre变换定义为:
h ~ ( t ) = s u p s ∈ R { t s − h ( s ) } \tilde{h}(t)=sup_{s\in R}\{ts-h(s)\} h~(t)=supsR{tsh(s)}

推论

  • 如果 g g g是凸函数,则 e g ( x ) e^{g(x)} eg(x)是凸函数
  • 如果 g g g是正值凹函数,则 1 g ( x ) \frac{1}{g(x)} g(x)1​是凸函数

7、与向量函数复合

给定函数 g : R n → R k g:\R^{n}\rightarrow \R^{k} g:RnRk h : R k → R h:\R^{k} \rightarrow\R h:RkR,有 f ( x ) = h ( g ( x ) ) = h ( g 1 ( x ) , g 2 ( x ) , . . . , g k ( x ) ) f(x)=h(g(x))=h(g_{1}(x),g_{2}(x),...,g_{k}(x)) f(x)=h(g(x))=h(g1(x),g2(x),...,gk(x)),有以下4条结论成立:

  • h为凸, h ~ \tilde{h} h~每个分量不降, g g g为凸,则 f f f为凸
  • h为凸, h ~ \tilde{h} h~每个分量不增, g g g为凹,则 f f f为凸
  • h为凹, h ~ \tilde{h} h~每个分量不降, g g g为凹,则 f f f为凹
  • h为凹, h ~ \tilde{h} h~每个分量不增, g g g为凸,则 f f f为凹

推论

  • 如果 g i g_i gi是凸函数,则 l o g ∑ i = 1 m e g ( x ) log\sum_{i=1}^m e^{g(x)} logi=1meg(x)是凸函数
  • 如果 g i g_i gi是正值凹函数,则 ∑ i = 1 m l o g g i ( x ) \sum_{i=1}^mlog{g_i(x)} i=1mloggi(x)​是凹函数

三、构造性凸分析

  • 从作为表达式给出的函数 f 开始
  • 为表达式构建解析树
    • 叶子是变量或常量
    • 节点是子表达式的函数
  • 使用组合规则将子表达式标记为凸、凹、仿射或无
  • 如果根节点标记为凸(凹),则 f 为凸(凹)
    在这里插入图片描述

四、透视与共轭

(一)透视函数

定义 f : R n → R f:\R^{n}\rightarrow \R f:RnR g : R n × R → R g:\R^{n}×\R \rightarrow\R g:Rn×RR,且

g ( x , t ) = t f ( x t ) , d o m g = { ( x , t ) ∣ x t ∈ d o m f , t > 0 } g(x,t)=tf(\frac{x}{t}),\quad domg=\{(x,t)|\frac{x}{t}\in domf,t>0\} g(x,t)=tf(tx),domg={(x,t)txdomf,t>0}

f f f是凸函数,则 g g g是凸函数。

  • f ( x ) = x T x f(x)=x^{T}x f(x)=xTx是凸函数,因此 g ( x , t ) = x T x t g(x,t)=\frac{x^{T}x}{t} g(x,t)=txTx是区域 { ( x , t ) ∣ t > 0 } \{(x,t)|t>0\} {(x,t)t>0}上的凸函数
  • f ( x ) = − l o g x f(x)=-logx f(x)=logx是凸函数,因此相对熵函数 g ( x , t ) = t l o g t − t l o g x g(x,t)=tlogt-tlogx g(x,t)=tlogttlogx R + + 2 \R^{2}_{++} R++2​上的凸函数
  • f f f是凸函数,那么 g ( x ) = ( c T x + d ) f ( A x + b c T x + d ) g(x)=(c^{T}x+d)f(\frac{Ax+b}{c^{T}x+d}) g(x)=(cTx+d)f(cTx+dAx+b)是区域 { x ∣ c T x + d > 0 , A x + b c T x + d ∈ d o m f } \{x|c^{T}x+d>0,\frac{Ax+b}{c^{T}x+d}\in domf\} {xcTx+d>0,cTx+dAx+bdomf}上的凸函数

(二)共轭函数

任一适当函数 f f f的共轭函数定义为:
f ∗ ( y ) = s u p x ∈ d o m f { y T x − f ( x ) } f^∗(y)=sup_{x∈dom\ f} \{y^Tx−f(x)\} f(y)=supxdom f{yTxf(x)}
对任意函数 f f f都可以定义为共轭函数,也即不要求 f f f是凸的(因为共轭函数是一组仿射函数的上界,因此不论 f f f凹凸性, f ∗ f^{*} f必为凸函数)

  • 根据凸性充要条件, f ( x ) f(x) f(x) ∀ x ∈ D ⊂ R \forall x\in D\subset\R xDR的切线都是对 f ( x ) f(x) f(x)的下界,即 f ( x ) ≥ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) = f ′ ( x 0 ) x + f ( x 0 ) − f ′ ( x 0 ) x 0 f(x)\geq f(x_{0})+f^{'}(x_{0})(x-x_{0})=f^{'}(x_{0})x+f(x_{0})-f^{'}(x_{0})x_{0} f(x)f(x0)+f(x0)(xx0)=f(x0)x+f(x0)f(x0)x0
  • 反过来,如果确定斜率 k k k,就可以得到一组平行线 { k x + b : b ∈ R } \{kx+b:b\in \R\} {kx+b:bR},从 − ∞ -\infty 增大 b b b,直到直线与 f ( x ) f(x) f(x)相切时有 f ( x ) ≥ k x + b f(x)\geq kx+b f(x)kx+b,也即 − b ≥ k x − f ( x ) -b\geq kx- f(x) bkxf(x),此不等式在 D D D上恒成立,并且能够取相等,因此 − b = s u p x ∈ D ( k x − f ( x ) ) = f ∗ ( y ) -b=\mathop{sup}\limits_{x\in D}(kx-f(x))=f^{*}(y) b=xDsup(kxf(x))=f(y)

f ∗ ( y ) f^*(y) f(y)给出了斜率为 y y y且与 f ( x ) f(x) f(x)相切直线截距的相反数,或者说共轭函数 f ∗ ( y ) f^*(y) f(y)表示了线性函数 y T x y^Tx yTx f ( x ) f(x) f(x)之间的最大差异。
在这里插入图片描述

五、拟凸性

(一)拟凸函数(quasiconvex function) 定义

dom f \text{dom}f domf为凸集,且对任意的 α \alpha α,其下水平集 S α = { x ∈ dom f ∣ f ( x ) ≤ α } S_\alpha = \{x\in\text{dom}f | f(x)\le\alpha\} Sα={xdomff(x)α}都是凸集,则 f f f为拟凸函数。

  • 如果 f f f是拟凸的,那么 − f -f f就是拟凹函数
  • 如果一个函数既是拟凸函数又是拟凹函数,那么它是拟线性(quasilinear) 的
    在这里插入图片描述

(二)常见的拟凸、拟凹、拟线性函数

拟凸函数:

  • f ( x ) = ∣ x ∣ f(x)=\sqrt{|x|} f(x)=x
  • f ( x ) = ∣ ∣ x − 1 ∣ ∣ 2 ∣ ∣ x − b ∣ ∣ 2 , d o m f = { x ∣ ∣ ∣ x − a ∣ ∣ 2 ≤ ∣ ∣ x − b ∣ ∣ 2 } f(x)=\frac{||x-1||_2}{||x-b||_2},domf=\{x|\ ||x-a||_2\leq||x-b||_2\} f(x)=∣∣xb2∣∣x1∣2,domf={x ∣∣xa2∣∣xb2}

拟凹函数:

  • f ( x ) = x 1 x 2 o n R 2 f(x)=x_1x_2\ on\ R^2 f(x)=x1x2 on R2

拟线性函数:

  • c e i l ( x ) = i n f { z ∈ Z ∣ z ≥ x } ceil(x)=inf\{z\in Z|z\geq x\} ceil(x)=inf{zZzx}
  • l o g x o n R + + log\ x\ on\ R_{++} log x on R++
  • 线性微分函数 f ( x ) = a T x + b c T x + d , d o m f = { c T x + d > 0 } f(x)=\frac{a^Tx+b}{c^Tx+d},domf=\{c^Tx+d>0\} f(x)=cTx+daTx+b,domf={cTx+d>0}

(三)拟凸函数的性质

  • 修正 Jensen 不等式:函数 f f f为拟凸的等价于:定义域为凸集,且
    0 ≤ θ ≤ 1 ⟹ f ( θ x + ( 1 − θ ) y ) ≤ max ⁡ { f ( x ) , f ( y ) } 0\le\theta\le1 \Longrightarrow f(\theta x+(1-\theta)y)\le\max\{f(x),f(y)\} 0θ1f(θx+(1θ)y)max{f(x),f(y)}

  • 一阶条件:具有凸域的可微 f 是拟凸当且仅当:
    f ( y ) ≤ f ( x ) ⟹ Δ f ( x ) T ( y − x ) ≤ 0 f(y)\leq f(x) \Longrightarrow \Delta f(x)^T(y-x)\leq 0 f(y)f(x)Δf(x)T(yx)0
    在这里插入图片描述

  • 拟凸函数之和不一定是拟凸函数

参考:
凸函数
(最优化理论与方法)第二章最优化所需基础知识-第七节:保凸的运算和共轭函数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/327302.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络安全ctf比赛_学习资源整理,解题工具、比赛时间、解题思路、实战靶场、学习路线,推荐收藏!...

对于想学习或者参加CTF比赛的朋友来说&#xff0c;CTF工具、练习靶场必不可少&#xff0c;今天给大家分享自己收藏的CTF资源&#xff0c;希望能对各位有所帮助。 CTF在线工具 首先给大家推荐我自己常用的3个CTF在线工具网站&#xff0c;内容齐全&#xff0c;收藏备用。 1、C…

Modbus协议

Modbus协议 1.起源 Modbus由Modicon公司于1979年开发&#xff0c;是一种工业现场总线协议标准。 Modbus通信协议具有多个变种&#xff0c;其中有支持串口&#xff0c;以太网多个版本&#xff0c;其中最著名的是Modbus RTU、Modbus ASCII和Modbus TCP三种 其中Modbus TCP是在施…

Oracle 流stream将删除的数据保存

Oracle 流stream将删除的数据保存 --实验的目的是捕获hr.employees表的删除行&#xff0c;将删除行插入到emp_del表中。 --设置初始化参数 AQ_TM_PROCESSES1 COMPATIBLE9.2.0 LOG_PARALLELISM1 --查看数据库的名称&#xff0c;我的为ora9,将以下的ora9全部替换为你的数据库名称…

【教程向】从零开始创建浏览器插件(三)解决 Chrome 扩展中弹出页面、背景脚本、内容脚本之间通信的问题

第三步&#xff1a;解决 Chrome 扩展中弹出页面、背景脚本、内容脚本之间通信的问题 Chrome 扩展开发中&#xff0c;弹出页面&#xff08;Popup&#xff09;、背景脚本&#xff08;Background Script&#xff09;、内容脚本&#xff08;Content Script&#xff09;各自拥有独立…

微信小程序知识点归纳(一)

前言&#xff1a;适用于有一定基础的前端开发同学&#xff0c;完成从网页开发到小程序开发的知识转换。 先立框架&#xff0c;后砌墙壁 回顾&#xff1a;了解微信小程序开发流程-CSDN博客 初始页面结构&#xff0c;三部分pages、utils、配置&#xff0c;分别存放页面、工具类…

OpenAI Whisper 语音转文本实验

为了实现语音方式与大语言模型的对话&#xff0c;需要使用语音识别&#xff08;Voice2Text&#xff09;和语音输出&#xff08;Text2Voice&#xff09;。感觉这项技术已比较成熟了&#xff0c;国内也有许多的机构开发这项技术&#xff0c;但是像寻找一个方便测试的技术居然还不…

使用Vue调用ColaAI Plus大模型,实现聊天(简陋版)

首先去百度文心注册申请自己的api 官网地址&#xff1a;LuckyCola 注册点开个人中心 查看这个文档自己申请一个ColaAI Plus定制增强大模型API | LuckyColahttps://luckycola.com.cn/public/docs/shares/api/colaAi.html来到vue的页面 写个样式 <template><Header …

C++ | Leetcode C++题解之第79题单词搜索

题目&#xff1a; 题解&#xff1a; class Solution { public:bool exist(vector<vector<char>>& board, string word) {rows board.size();cols board[0].size();for(int i 0; i < rows; i) {for(int j 0; j < cols; j) {if (dfs(board, word, i, …

dnf手游攻略,新手入坑必备!

一、角色创建策略 在DNF手游中&#xff0c;角色创建是玩家初入游戏的首要步骤。为最大化游戏体验和收益&#xff0c;新手玩家通常建议创建三个角色&#xff1a;一个主账号和两个副账号。 主账号选择 主账号的选择应基于玩家个人的喜好和对职业的熟悉程度。无论选择哪个职业&a…

Gone框架介绍17 - 创建一个可运行在生产环境的Web项目

gone是可以高效开发Web服务的Golang依赖注入框架 github地址&#xff1a;https://github.com/gone-io/gone 文档原地址&#xff1a;https://goner.fun/zh/guide/auto-gen-priest.html 请帮忙在github上点个 ⭐️吧&#xff0c;这对我很重要 &#xff1b;万分感谢&#xff01;&a…

视频汇聚管理/安防监控系统EasyCVR如何开启和调用验证码登录接口?

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。视频汇聚融合管理平台EasyCVR既具备传统安防视…

C语言写扫雷游戏(数组和函数实践)

目录 最后是代码啦&#xff01; 手把手教你用C语言写一个扫雷游戏&#xff01; 1.我们搭建一下这个多文件形式的扫雷游戏文件结构 2.在主函数里面设置一个包含游戏框架的菜单 菜单可以方便游戏玩家选择要进行的动作和不断地进行下一局。 3.switch语句连接不同的结果 菜单可…

AI与边缘设备,光子芯片,AI规划能力,自然语言驱动的AI游戏

1 Archetype AI 发布了一个创新的人工智能平台 —— Newton 这是一个专门为理解物理世界设计的基础模型。 Newton 设计用于连接实时物理数据&#xff0c;其数据源是全球数十亿传感器的输入&#xff0c;实现了对物理现实的直接解读。 利用从各种传感器&#xff08;如加速度计…

被动防护不如主动出击

自网络的诞生以来&#xff0c;攻击威胁事件不断涌现&#xff0c;网络攻防对抗已然成为信息时代背景下的一场无硝烟的战争。然而&#xff0c;传统的网络防御技术&#xff0c;如防火墙和入侵检测技术&#xff0c;往往局限于一种被动的敌暗我明的防御模式&#xff0c;面对攻击者无…

Windows Qt中支持heic 图片显示

安装vcpkg&#xff1a; git clone https://github.com/microsoft/vcpkg 执行脚本&#xff1a; .\vcpkg\bootstrap-vcpkg.bat 在安装之前如果需要指定vs的编译器&#xff0c; 在如下文件中做更改&#xff0c; 我指定的是用vs2019编译的&#xff1a; D:\vcpkg\vcpkg\triplets 增…

android图标底色问题,debug与release不一致

背景 在android 8&#xff08;sdk 26&#xff09;之前的版本&#xff0c;直接使用图片文件作为图标&#xff0c;开发时比较容易控制图标&#xff0c;但是不同的安卓定制版本就不容易统一图标风格了。 在android 8及之后的版本&#xff0c;图标对应的是ic_launcher.xml&#x…

VC 编程开发中的 封装类 :log日志类 和SQL server 操作类 源代码

VC 编程开发中的 封装类 &#xff1a;日志类 和SQL server 操作类 源代码 在VC&#xff08;Visual C&#xff09;开发中&#xff0c;日志文件输出是一个至关重要的环节&#xff0c;它对于程序调试、问题排查以及系统监控等方面都具有不可替代的作用。以下是对日志文件输出在VC开…

网站localhost和127.0.0.1可以访问,本地ip不可访问解决方案

部署了一个网站, 使用localhost和127.0.0.1加端口号可以访问, 但是使用本机的ip地址加端口号却不行. 原因可能有多种. 可能的原因: 1 首先要确认是否localhost对应的端口是通的(直接网址访问), 以及你无法访问的那个本机ip是否正确(使用ping测试)&#xff1b; 2 检查本机的防火…

好题总结汇总

好题总结汇总 总结一些做完很有收获的题。 一、经典问题 DP的结合 1、题意&#xff1a; 给定 n n n 种颜色的球的数量 a 1 , a 2 , . . . , a n a_1, a_2, ..., a_n a1​,a2​,...,an​&#xff0c;选出一些不同种类的球(也就是在n种球中选球的任意情况)&#xff0c;将球…

企业如何通过云服务器实现全球连通运营

如果说互联网是一座桥&#xff0c;连接起了全球各地的信息&#xff0c;那云服务器就如同一座高速公路&#xff0c;帮助企业轻松实现跨国家、跨时区的全球运营。 这个听起来像科幻电影的情节其实已经成为了我们现实生活的一部分。现在就来具体看一下如何做到这一点吧。 其一&…