(16)MATLAB仿真Nakagami-m分布1

文章目录

  • 前言
  • 一、Nakagami分布
  • 二、MATLAB建模代码
  • 三、仿真结果画图
  • 四、总结


前言

Nakagami衰落模型最初是由于该模型与短波电离层传播的经验结果相匹配而提出的。它还用于仿真来自多个干扰源的情况,因为多个独立且同分布(i.i.d)的瑞利分布随机变量的总和幅度服从Nakagami分布。Nakagami和Ricean衰落在接近其平均值时表现相似。

本文给出Nakagami衰落的概率密度函数,并给出MATLAB建模代码和仿真结果。


一、Nakagami分布

Nakagami分布或Nakagami-m分布与Gamma函数有关。Nakagami分布由两个参数表征——形状参数(m)和尺度参数(ω)。Nakagami分布的PDF由下式给出:

在这里插入图片描述

Nakagami分布的平均值为:

在这里插入图片描述

Nakagami分布的方差为:

在这里插入图片描述

接下来给出Nakagami分布PDF的MATLAB建模代码。

二、MATLAB建模代码

使用不同的形状参数m,尺度参数w = 1,代码如下:

clear all
close all
clcmu = 0.5:0.25:2;
w = 1;                  % shape and spread parameters to test
N = 1e6;                % Number of Samplesx = 0.01:0.01:3;lineColors = ['r' ,'g' ,'b' ,'c' ,'m' ,'y' ,'k' ];       % line color arguments
legendString = cell(1 ,7); 
figure()
hold on;
grid on;
for k = 1:length(mu)m = mu(k);for n = 1:300P(n) = 2/gamma(m) * ((m/w)^m)*(x(n)^(2*m-1))* (exp(-m*x(n)^2/w));endplot(P,lineColors(k),'LineWidth', 1.5)legendString{k} = strcat('m=', num2str(mu(k)),', \omega=', num2str(w));
end
legend(legendString);
title('Nakagami-m - PDF ' );
xlabel('Parameter - y' );
ylabel('f_Y(y)' );

也可以设置不同的尺度参数重新建模仿真。

三、仿真结果画图

画图如下:

在这里插入图片描述

四、总结

由该仿真结果可以发现,因子m影响Nakagami分布概率密度函数的形状:
(1)当m=1时,Nakagami等同于Rayleigh分布;
(2)当m=0.5时,为单边高斯分布;
(3)当0.5<m<1时,概率密度函数拖尾大于Rayleigh分布的概率密度函数;
(4)当m>1时,概率密度函数拖尾的衰减速度比Rayleigh分布的要快,m取值越大,拖尾衰减越快,概率密度函数曲线越尖锐。

所以,随着m值取不同的值,Nakagami分布涵盖了单边高斯分布、Rayleigh分布和Ricean分布,这正是m称为形状参数的原因。

另外,也可以设置不同的尺度参数重新建模仿真,查看其对PDF曲线的影响。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/438130.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于四种网络结构的WISDM数据集仿真及对比:Resnet、LSTM、Shufflenet及CNN

在上节中&#xff0c;我们已经详细介绍了WISDM数据集及如何使用CNN网络训练&#xff0c;得到了六个维度的模型仿真指标及五个维度的可视化分析&#xff0c;那么现在我们将训练模型推广到其他网路结构中去&#xff0c;通过仿真实验来对比一下不同网络之间对于WISDM数据集的训练效…

大语言模型入门(三)——提示词编写注意事项

一、提示词编写原则 提示词的编写应当遵循两个原则&#xff0c; 一个是指令必须清晰且具体&#xff0c;另一个是应当给模型充足的时间去思考。首先&#xff0c;你的指令足够清晰和具体&#xff0c;才能让大模型明确你需要它执行的任务&#xff0c;从而降低我们得到无关或者不正…

kubernetes-强制删除命名空间

一、故障现象 1、删除命名空间卡住、强制删除也卡住 2、其他终端显示命名空间下无资源 二、处理步骤 1、kubectl get namespace cilium-test -o json > temp.json 获取你需要删除的命名空间json描述文件。 2、修改finalize字段 3、替换 kubectl replace --raw "/api/v1…

Pikachu-xss防范措施 - href输出 js输出

总体原则&#xff1a; 输入做过滤&#xff0c;输出做转义 过滤&#xff1a;根据业务需要进行过滤&#xff0c;如&#xff1a;输入点要求输入手机号&#xff0c;则只允许输入手机号格式的数字&#xff1b; 转义&#xff1a;所有输出到前端的数据&#xff0c;都根据输出点进行转…

【MySQL】DML数据操作语句和基本的DQL语句

目录 一、Mysql对数据的增删改 1. 增加数据 2. 修改数据&#xff08;UPDATE语句&#xff09; 3. 删除 3.1 delete、truncate、drop区别 二、DQL语言&#xff08;重点&#xff09; 1. 单表查询 1.1 最简单的查询 1.2 从表中获取数据 1.3 字段名起别名 1.4 添加字段 1…

深度学习——线性神经网络(一、线性回归)

目录 一、线性回归1.1 线性回归的基本元素1.1.1 术语介绍1.1.2 线性模型1.1.3 损失函数1.1.4 解析解1.1.5 随机梯度下降1.1.6 模型预测 1.2 正态分布与平方损失 因为线性神经网络篇幅比较长&#xff0c;就拆成几篇博客分开发布。目录序号保持连贯性。 一、线性回归 回归&#x…

Linux:深入理解冯诺依曼结构与操作系统

目录 1. 冯诺依曼体系结构 1.1 结构分析 1.2 存储结构分布图 2. 操作系统 2.1 概念 2.2 如何管理 2.3 什么是系统调用和库函数 1. 冯诺依曼体系结构 1.1 结构分析 不管是何种计算机&#xff0c;如个人笔记本电脑&#xff0c;服务器&#xff0c;都是遵循冯诺依曼结构。…

基于Springboot的在线订餐系统设计与实现(论文+源码)_kaic

摘 要 当今世界&#xff0c;互联网以及和互联网有关的行业都在不断的发展&#xff0c;也在持续走进人们的生活&#xff0c;在此趋势下人们对于通过互联网解决生活问题的需求愈来愈多&#xff0c;本文考虑到了这些情况后做出了该订餐系统。 本系统选择了MySQL作为主要存储单元…

深入探讨Windows 11专业版与Windows 11专业工作站版的差异

前言 深入探讨Windows 11专业版与Windows 11专业工作站版的差异&#xff0c;可以更全面地理解这两款操作系统版本面向的不同用户群体、硬件支持、性能特点以及应用场景&#xff0c;从而为专业用户和企业选择最合适的平台提供依据。 硬件支持与扩展能力 Windows 11专业版&…

Apache OFBiz SSRF漏洞CVE-2024-45507分析

Apache OFBiz介绍 Apache OFBiz 是一个功能丰富的开源电子商务平台&#xff0c;包含完整的商业解决方案&#xff0c;适用于多种行业。它提供了一套全面的服务&#xff0c;包括客户关系管理&#xff08;CRM&#xff09;、企业资源规划&#xff08;ERP&#xff09;、订单管理、产…

记录一次学习--委派攻击学习

目录 为什么要使用委派 什么账号可以使用委派 非约束性委派 这里有一张图 利用 流程 约束性委派 这里有一张图 如何利用 条件 具体流程 为什么要使用委派 这个是因为可能A服务需要B服务的支持&#xff0c;但是A服务的权限不可以使用B服务。然后这时就可以让域用户将…

OpenStack Yoga版安装笔记(十四)启动一个实例

1、官方文档 OpenStack Installation Guidehttps://docs.openstack.org/install-guide/ 本次安装是在Ubuntu 22.04上进行&#xff0c;基本按照OpenStack Installation Guide顺序执行&#xff0c;主要内容包括&#xff1a; 环境安装 &#xff08;已完成&#xff09;OpenStack…

OpenCV计算机视觉库

计算机视觉和图像处理 Tensorflow入门深度神经网络图像分类目标检测图像分割OpenCVPytorchNLP自然语言处理 OpenCV 一、OpenCV简介1.1 简介1.2 OpenCV部署1.3 OpenCV模块 二、OpenCV基本操作2.1 图像的基本操作2.1.1 图像的IO操作2.1.2 绘制几何图像2.1.3 获取并修改图像的像素…

无人机电力巡检:点亮电力巡检新视野!

一、无人机电力巡查的优势 提高巡检效率&#xff1a;无人机可以搭载高清摄像头、红外热像仪等先进设备&#xff0c;实时拍摄和传输图像&#xff0c;帮助巡检人员快速发现潜在问题&#xff0c;如电线破损、绝缘子污损、设备过热等&#xff0c;从而大大缩短了巡检周期。 降低人…

python-斐波那契词序列/最大回文乘积/求最大最小k个元素

一:斐波那契词序列题目描述 编写一个程序&#xff0c;生成斐波那契词序列的前n个元素。 斐波那契词序列是一个词序列&#xff0c;其中每个词是通过连接前两个词形成的。 它以斐波那契序列命名&#xff0c;因为它是以类似的方式创建的&#xff0c;但是我们不是加数字&#xff0c…

《OpenCV》—— 指纹验证

用两张指纹图片中的其中一张对其验证 完整代码 import cv2def cv_show(name, img):cv2.imshow(name, img)cv2.waitKey(0)def verification(src, model):sift cv2.SIFT_create()kp1, des1 sift.detectAndCompute(src, None)kp2, des2 sift.detectAndCompute(model, None)fl…

以太网交换安全:MAC地址表安全

一、MAC地址表安全 MAC地址表安全是网络安全中的一个重要方面&#xff0c;它涉及到网络设备的MAC地址表的管理和保护。以下是对MAC地址表安全的详细介绍&#xff1a; &#xff08;1&#xff09;基本概念 定义&#xff1a;MAC地址表是网络设备&#xff08;如交换机&#xff0…

【Linux进程间通信】Linux匿名管道详解:构建进程间通信的隐形桥梁

&#x1f4dd;个人主页&#x1f339;&#xff1a;Eternity._ ⏩收录专栏⏪&#xff1a;Linux “ 登神长阶 ” &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; ❀Linux进程间通信 &#x1f4d2;1. 进程间通信介绍&#x1f4da;2. 什么是管道&#x1f4dc;3…

unity 默认渲染管线材质球的材质通道,材质球的材质通道

标准渲染管线——材质球的材质通道 文档&#xff0c;与内容无关&#xff0c;是介绍材质球的属性的。 https://docs.unity3d.com/2022.1/Documentation/Manual/StandardShaderMaterialParameters.html游戏资源中常见的贴图类型 https://zhuanlan.zhihu.com/p/260973533 十大贴图…

最新版ChatGPT对话系统源码 Chat Nio系统源码

介绍&#xff1a; 最新版ChatGPT对话系统源码 Chat Nio系统源码 支持 Vision 模型, 同时支持 直接上传图片 和 输入图片直链或 Base64 图片 功能 (如 GPT-4 Vision Preview, Gemini Pro Vision 等模型) 支持 DALL-E 模型绘图 支持 Midjourney / Niji 模型的 Imagine / Upsc…