【平衡二叉树】AVL树(双旋)

图片名称
🎉博主首页: 有趣的中国人

🎉专栏首页: C++进阶

🎉其它专栏: C++初阶 | Linux | 初阶数据结构

在这里插入图片描述

小伙伴们大家好,本片文章将会讲解AVL树左双选和右双旋的相关内容。


如果看到最后您觉得这篇文章写得不错,有所收获,麻烦点赞👍、收藏🌟、留下评论📝。您的支持是我最大的动力,让我们一起努力,共同成长!

文章目录

  • `1. 左右双旋`
  • `1. 右左双旋`
  • `3. AVL的验证`
  • `3. AVL的验证`
  • `3. AVL的性能`



1. 左右双旋


⚡出现情况
在这里插入图片描述

1. 此处在30的左子树或者右子树新增节点都会引发旋转;
2. 如果单纯的对根节点进行右单旋,并不能解决左边高的问题,会变成右边高,所以要进行双旋,步骤如下:

1. 先对parent->left节点进行左单旋

在这里插入图片描述

2. 再对根节点进行右单旋

在这里插入图片描述
完整步骤
在这里插入图片描述

我们假设顶端节点叫做parentparent->left 叫做subLsubL->right 叫做subLR


左右双旋后满足二叉搜索树的性质:

左右双旋后,实际上就是让subLR的左子树和右子树,分别作为subLparent的右子树和左子树,再让subLparent分别作为subLR的左右子树,最后让subLR作为整个子树的根。

1. subLR的左子树当中的结点本身就比subL的值大,因此可以作为subL的右子树。

2. subLR的右子树当中的结点本身就比parent的值小,因此可以作为parent的左子树。

3. 经过步骤1、2后,subL及其子树当中结点的值都就比subLR的值小,而parent及其子树当中结点的值都就比subLR的值大,因此它们可以分别作为subLR的左右子树。


左右双旋后,平衡因子的更新随着subLR原始平衡因子的不同分为以下三种情况:

1、subLR原始平衡因子是-1时,左右双旋后parent、subL、subLR的平衡因子分别更新为1、0、0
在这里插入图片描述


2、subLR原始平衡因子是1时,左右双旋后parent、subL、subLR的平衡因子分别更新为0、-1、0
在这里插入图片描述


3、subLR原始平衡因子是0时,左右双旋后parent、subL、subLR的平衡因子分别更新为0、0、0
在这里插入图片描述

代码如下:

void RotateLR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;//1、以subL为旋转点进行左单旋RotateL(subL);//2、以parent为旋转点进行右单旋RotateR(parent);if (bf == -1){subL->_bf = 0;parent->_bf = 1;subLR->_bf = 0;}else if (bf == 1){subL->_bf = -1;parent->_bf = 0;subLR->_bf = 0;}else if (bf == 0){subL->_bf = subLR->_bf = parent->_bf = 0;}else {assert(false);}
}


1. 右左双旋


⚡出现情况

在这里插入图片描述

1. 此处在60的左子树或者右子树新增节点都会引发旋转;
2. 如果单纯的对根节点进行左单旋,并不能解决右边高的问题,会变成左边高,所以要进行双旋,步骤如下:

1. 先对subR节点进行右单旋

在这里插入图片描述

2. 对parent节点进行左单旋

在这里插入图片描述
3. 完整步骤

在这里插入图片描述

右左双旋后满足二叉搜索树的性质:

右左双旋后,实际上就是让subRL的左子树和右子树,分别作为parent和subR的右子树和左子树,再让parent和subR分别作为subRL的左右子树,最后让subRL作为整个子树的根。

1、subRL的左子树当中的结点本身就比parent的值大,因此可以作为parent的右子树。

2、subRL的右子树当中的结点本身就比subR的值小,因此可以作为subR的左子树。

3、经过步骤1、2后,parent及其子树当中结点的值都就比subRL的值小,而subR及其子树当中结点的值都就比subRL的值大,因此它们可以分别作为subRL的左右子树。


右左双旋后,平衡因子的更新随着subRL原始平衡因子的不同分为以下三种情况:

1、subRL原始平衡因子是1时,右左双旋后parent、subR、subRL的平衡因子分别更新为-1、0、0
在这里插入图片描述


2、subRL原始平衡因子是-1时,右左双旋后parent、subR、subRL的平衡因子分别更新为0、1、0
在这里插入图片描述


3、subRL原始平衡因子是0时,左右双旋后parent、subR、subRL的平衡因子分别更新为0、0、0
在这里插入图片描述

代码如下:

void RotateRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(subR);RotateL(parent);if (bf == 1){subR->_bf == 0;parent->_bf = -1;subRL->_bf = 0;}else if (bf == -1){subR->_bf = 1;parent->_bf = 0;subRL->_bf = 0;}else if (bf == 0){subR->_bf = parent->_bf = subRL->_bf = 0;}else {assert(false);}
}


3. AVL的验证


AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    • 如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
  2. 验证其为平衡树
    • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
    • 节点的平衡因子是否计算正确

详解代码:

public:void InOrder()
{_InOrder(_root);
}int Size()
{_Size(_root);
}int Height()
{_Height(_root);
}bool IsBalanceTree()
{return _IsBalanceTree(_root);
}private:bool _IsBalanceTree(Node* root)
{if (root == nullptr){return true;}int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);// 计算左右子树高度差绝对值int dec = abs(leftHeight - rightHeight);// 如果比1大说明不平衡if (dec > 1){cout << root->_kv.first << endl;return false;}// 检查平衡因子是否计算正确if (rightHeight - leftHeight != root->_bf){cout << root->_kv.first << endl;return false;}return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
}
int _Height(Node* root)
{if (root == nullptr){return 0;}int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);return max(leftHeight, rightHeight) + 1;
}int _Size(Node* root)
{if (root == nullptr){return 0;}return _Size(root->_left) + _Size(root->_right) + 1;
}void _InOrder(Node* root)
{if (root == nullptr){return;}_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);
}

3. AVL的验证


⚡验证示例1

int a[] = {16, 3, 7, 11, 9, 26, 18, 14, 15};

验证代码:

void AVLTest1()
{AVLTree<int, int> t;int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };for (auto& e : a){t.Insert({ e,e });cout << "Insert:" << e << "->" << t.IsBalanceTree() << endl;}t.InOrder();
}

在这里插入图片描述

⚡验证示例2

int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };

验证代码:

void AVLTest1()
{AVLTree<int, int> t;int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };for (auto& e : a){t.Insert({ e,e });cout << "Insert:" << e << "->" << t.IsBalanceTree() << endl;}t.InOrder();
}

在这里插入图片描述



3. AVL的性能


AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/327723.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

k8s 理论知识基本介绍

目录 一 k8s 理论前言 &#xff08;一&#xff09;微服务是什么 1&#xff0c;应用场景 2&#xff0c;API 是什么 &#xff08;二&#xff09;&#xff0c;微服务 如何做版本迭代 1. Docker镜像构建 2. 版本标记 3. Docker Registry 4. 环境一致性 5. 滚动更新…

C#中json数据序列化和反序列化的最简单方法(C#对象和字符串的相互转换)

文章目录 将C#对象转换为json字符串Newtonsoft模块的安装用Newtonsoft将对象转换为json字符串 将json字符串转换为C#对象 将C#对象转换为json字符串 本介绍将基于C#中的第三方库Newtonsoft进行&#xff0c;因此将分为Newtonsoft模块的安装和使用两部分。该模块的优势在于只需要…

等保2.0的全面解读与实施策略

《网络安全等级保护基本要求》&#xff08;等保2.0&#xff09;是中华人民共和国国家安全部于2019年6月发布的网络安全等级保护标准。该标准规定了我国关键信息基础设施的网络安全等级保护要求和评估标准&#xff0c;对于保障我国网络安全具有重要的意义。下面是对等保2.0的全面…

安全风险 - 如何解决 setAccessible(true) 带来的安全风险?

可能每款成熟的金融app上架前都会经过层层安全检测才能执行上架&#xff0c;所以我隔三差五就能看到安全检测报告中提到的问题&#xff0c;根据问题的不同级别&#xff0c;处理的优先级也有所不同&#xff0c;此次讲的主要是一个 “轻度问题” &#xff0c;个人认为属于那种可改…

利用一段代码轻松绕过PHP授权系统

利用一段代码轻松绕过PHP授权系统 第一步&#xff1a;首先你需要改名全局文件 比如说全局文件 common.php&#xff0c;那么 你将他改为core.php 第二步&#xff1a;创建文件 创建一个文件&#xff0c;和改名前的全局文件名称一样&#xff0c;然后把以下代码复制进去就OK了 …

SpringBoot解决CORS跨域——WebMvcConfigurationSupport

前端请求后端报错了。 状态码&#xff1a;403 返回错误&#xff1a;Invalid coRs request 增加配置类WebMvcConfig Configuration public class WebMvcConfig extends WebMvcConfigurationSupport {Overridepublic void addCorsMappings(CorsRegistry registry) {// 允许跨域…

【java】异常与错误

Throwable包括Error和Expected。 Error Error错误是程序无法处理的&#xff0c;由JVM产生并抛出的。 举例&#xff1a;StackOverflowError \ ThreadDeath Expected Expected异常包括两类&#xff0c;即受检异常(非运行时异常)和非受检异常(运行时异常)&#xff0c;异常往往…

6. RedHat认证-基于公钥的认证方式

6. RedHat认证-基于公钥的认证方式 主要学习客户端访问服务端的时候&#xff0c;免密登录这一方式 注意: 免密登录只是基于公钥认证的一个附带属性(基于公钥认证的方式更加安全&#xff0c;防止黑客暴力破解) 第一步&#xff1a;将客户端生成的秘钥传送到服务器 在客户端通过…

MIT 6.5840(6.824) Lab1:MapReduce 设计实现

1 介绍 本次实验是实现一个简易版本的MapReduce&#xff0c;你需要实现一个工作程序&#xff08;worker process&#xff09;和一个调度程序&#xff08;coordinator process&#xff09;。工作程序用来调用Map和Reduce函数&#xff0c;并处理文件的读取和写入。调度程序用来协…

编译适配纯鸿蒙系统的ijkplayer中的ffmpeg库

目前bilibili官方的ijkplayer播放器&#xff0c;是只适配Android和IOS系统的。而华为接下来即将发布纯harmony系统&#xff0c;是否有基于harmony系统的ijkplayer可以使用呢&#xff1f; 鸿蒙版ijkplayer播放器是哪个&#xff0c;如何使用&#xff0c;这个问题&#xff0c;大家…

IP代理中的SOCKS5代理是什么?安全吗?

在互联网世界中&#xff0c;网络安全和个人隐私保护变得日益重要。SOCKS5代理作为一种安全高效的网络工具&#xff0c;不仅可以保护个人隐私安全&#xff0c;还可以提供更稳定、更快度的网络连接。本文将带大家深入了解SOCKS5代理在网络安全领域中的应用。 什么是SOCKS5代理 …

【Cesium解读】Cesium中primitive/entity贴地

官方案例 Cesium Sandcastle Cesium Sandcastle 好文推荐&#xff1a;Cesium贴地设置_primitive贴地-CSDN博客 scene.globe.depthTestAgainstTerrain true; True if primitives such as billboards, polylines, labels, etc. should be depth-tested against the terrain…

银行核心背后的落地工程体系丨混沌测试的场景设计与实战演练

本文作者&#xff1a; 张显华、窦智浩、卢进文 与集中式架构相比&#xff0c;分布式架构的系统复杂性呈指数级增长&#xff0c;混沌工程在信创转型、分布式架构转型、小机下移等过程中有效保障了生产的稳定性。本文分享了 TiDB 分布式数据库在银行核心业务系统落地中进行混沌测…

(深度估计学习)Win11复现DepthFM

目录 1. 系统配置2. 拉取代码&#xff0c;配置环境3.开始深度预测4.运行结果 论文链接&#xff1a;https://depthfm.github.io/ 讲解链接&#xff1a;https://www.php.cn/faq/734404.html 1. 系统配置 本人系统&#xff1a;Win11 CUDA12.2 python3.11.5 这里附上几个CUDA安装链…

谷歌Gemini时代来了!加固搜索护城河、赋能全家桶,Gemini 1.5 Pro升级至200万token

3 月中旬&#xff0c;谷歌宣布 Google I/O 定档北京时间 5 月 15 日凌晨 1 点。而当大会开幕时间临近&#xff0c;本应是讨论度最高的时候&#xff0c;「宿敌」OpenAI 却半路杀出&#xff0c;抢先一天&#xff0c;仅耗时 27 分钟就发布了颠覆性巨作 GPT-4o&#xff0c;将新一轮…

java项目之企业资产管理系统(springboot+vue+mysql)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的企业资产管理系统。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 管理员功能有个人中心&…

【学习笔记】C++每日一记[20240513]

简述静态全局变量的概念 在全局变量前加上static关键字&#xff0c;就定义了一个静态全局变量。通常情况下&#xff0c;静态全局变量的声明和定义放在源文件中&#xff0c;并且不能使用extern关键字将静态全局变量导出&#xff0c;因此静态全局变量的**作用于仅限于定义静态全…

数据库学习之select语句练习

目录 素材 练习 1、显示所有职工的基本信息。 结果 2、查询所有职工所属部门的部门号&#xff0c;不显示重复的部门号。 结果 3、求出所有职工的人数。 结果 4、列出最高工和最低工资。 结果 5、列出职工的平均工资和总工资。 结果 6、创建一个只有职…

C语言----斐波那契数列(附源代码)

各位看官们好&#xff0c;当我写了上一篇博客杨辉三角后&#xff0c;有一些看官叫我讲一下斐波那契数列。对于这个大家应该是有了解的。最简单的规律就是f(n)f(n-2)f(n-1)。就是当前是前两项之和&#xff0c;然后下标1和0都是1.从第三项开始计算的。那么我们知道规律&#xff0…

学习神经网络基础架构

今日学习了解了常见的几种神经网络基础架构。 1.卷积神经网络 卷积神经网络CNN是一种人工神经网络&#xff0c;旨在处理和分析具有网格状拓扑结构的数据&#xff0c;如图像和视频。将 CNN 想象成一个多层过滤器&#xff0c;可处理图像以提取有意义的特征并进行推理预测。 想…