傅里叶变换
傅里叶变换(Fourier transform)是一种线性的积分变换,从时间转换为频率的变化
1. 连续傅里叶变换
这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式
连续傅里叶变换的逆变换 (inverse Fourier transform)为:
一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。
其他形式变换对
在通信或是信号处理方面,常以来代换,而形成新的变换对:
或者是因系数重分配而得到新的变换对:
2.傅里叶级数
连续形式的傅里叶变换其实是傅里叶级数 (Fourier series)的推广,因为积分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的:
其中Fn为复幅度。对于实值函数,函数的傅里叶级数可以写成:
其中an和bn是实频率分量的幅度。
3.离散时域傅里叶变换
离散傅里叶变换是离散时间傅里叶变换(DTFT)的特例。DTFT在时域上离散,在频域上则是周期的。DTFT可以被看作是傅里叶级数的逆变换。
4.离散傅里叶变换
离散傅里叶变换(DFT),是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。在实际应用中通常采用快速傅里叶变换以高效计算DFT。
为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数xn定义在离散点而非连续域内,且须满足有限性或周期性条件。这种情况下,使用离散傅里叶变换(DFT),将函数xn表示为下面的求和形式:
其中Xk是傅里叶幅度。直接使用这个公式计算的计算复杂度为O(nn),而快速傅里叶变换(FFT)可以将复杂度改进为O(nlgn)。
实数离散傅里叶变换
- 例子
原始信号图像:
这个信号的长度是16,于是可以把这个信号分解9个余弦波和9个正弦波
(一个长度为N的信号可以分解成N/2+1个正余弦信号,一个长度为N的信号,最多只能有N/2+1个不同频率,再多的频率就超过了计算机所能所处理的精度范围 )
在程序中:
x[]表示信号在每个时间点上的幅度值数组, 用大写X[]表示每种频率的副度值数组(即时间x-->频率X)X[]数组分两种,一种是表示余弦波的不同频率幅度值:Re X[],另一种是表示正弦波的不同频率幅度值:Im X[]
频域中关于频率的四种表示方法
1、序号表示方法,根据时域中信号的样本数取0 ~ N/2,用这种方法在程序中使用起来可以更直接地取得每种频率的幅度值,因为频率值跟数组的序号是一一对应的: X[k],取值范围是0 ~ N/2;
2、分数表示方法,根据时域中信号的样本数的比例值取0 ~ 0.5: X[ƒ],ƒ = k/N,取值范围是0 ~ 1/2;
3、用弧度值来表示,把ƒ乘以一个2π得到一个弧度值,这种表示方法叫做自然频率(natural frequency):X[ω],ω = 2πƒ = 2πk/N,取值范围是0 ~ π;
4、以赫兹(Hz)为单位来表示,这个一般是应用于一些特殊应用,如取样率为10 kHz表示每秒有10,000个样本数:取值范围是0到取样率的一半。DFT基本函数
ck[i] = cos(2πki/N)
sk[i] = sin(2πki/N)
其中k表示每个正余弦波的频率,如为2表示在0到N长度中存在两个完整的周期,10即有10个周期分解运算方法(DFT)
1)通过联立方程进行求解, 从代数的角度看,要从N个已知值求N个未知值,需要N个联立方程,且N个联立方程必须是线性独立的,计算量非常的大且极其复杂,很少被采用;
2)利用信号的相关性(correlation)进行计算;
上面a和 b两个图是待检测信号波,图a很明显可以看出是个3个周期的正弦信号波,图b的信号波则看不出是否含有正弦或余弦信号,图c和d都是个3个周期的正弦信号波,图e和f分别是a、b两图跟c、d两图相乘后的结果,图e所有点的平均值是0.5,说明信号a含有振幅为1的正弦信号c,但图f所有点的平均值是0,则说明信号b不含有信号d。这个就是通过信号相关性来检测是否含有某个信号的方法。
3)快速傅立叶变换(FFT),大大提高了运算速度,根据复数形式的傅立叶变换来实现的,它把N个点的信号分解成长度为N的频域,
5.傅立叶变换分类
函数在时(频)域的离散对应于其像函数在频(时)域的周期性。反之连续则意味着在对应域的信号的非周期性。也就是说,时间上的离散性对应着频率上的周期性。同时,注意,离散时间傅里叶变换,时间离散,频率不离散,它在频域依然是连续的。
根据原信号的不同类型,我们可以把傅立叶变换分为四种类别:
1、非周期性连续信号 傅立叶变换(Fourier Transform)
2、周期性连续信号 傅立叶级数(Fourier Series)
3、非周期性离散信号 离散时域傅立叶变换(Discrete Time Fourier Transform)
4、周期性离散信号 离散傅立叶变换(Discrete Fourier Transform)
下图是四种原信号图例(从上到下,依次是FT,FS,DTFT,DFT):
问题:1.把长度有限的信号表示成长度无限的信号:
把信号用复制的方法进行延伸,这样信号就变成了周期性离散信号,这时我们就可以用离散傅立叶变换方法(DFT)
2.对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示:
对于离散信号的变换只有离散傅立叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理
6.形象理解
矩形波在频域里的另一个模样了:
这就是矩形波在频域的样子,频域图像,也就是俗称的频谱,就是——
再清楚一点:
可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。振幅为 0 的正弦波。
我见解
傅里叶变换是一个线性的积分变换,从时域到频域,傅立叶变换分为连续傅立叶变换、傅立叶级数、离散时域傅立叶变换、离散傅立叶变换(DFT).原理即是将输入的长度为N信号分解为N/2+1 正余弦,通过正交的原理。傅里叶变换,实际上就是给一个时域上的函数乘上旋转因子,然后在全时间域上积分。在全时间域上积分,所以最后结果就刨去了时间t的影响。最后的积分结果是一个只关于的函数,也就是说是一个关于角频率的函数。这样就实现了时域到频域的转换。