前面说到过泰勒展开式,这里我们在复习一下。
我们知道泰勒展开式就是把函数分解成1,x,x^2,x^3....幂级数(指数)的和。
你知道为什么要展开成幂级数的和吗?请看这里:
因为我们把y展开成泰勒级数 y = 1+x+x^2+x^3+x^4+…的时候我们可以无限细分得到函数在每个点的【【变化】】呀!
这和你把3234.352拆成3000+200+30+4+0.3+0.05+0.002一样一样一样的啊!!!
所谓对函数的无限细分,就是不断求导,得到123456789阶变化率,从而得到这个函数到底在各个点【精细】【变化】的有多剧烈啊!还记得神马叫变化吗?位移的变化是速度,速度的变化是加速度,加速度的变化是加加速度的。
泰勒级数的每一阶的系数(主值)就是各阶导数啊!
所以泰勒级数就是在描述一个函数的各个点的变化啊!!
明白了,泰勒展开级数,是把函数转变成幂级数的和,那我们回归原题,看看,傅立叶级数表达的含义。
百度百科是这样说的:
法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。
哦,终于有点明白了,
你想知道为什么分解成三角函数的和(正弦波或余弦波)那么重要吗?
我们知道,对于一个周期函数来说,和周期对应的叫频率。频率表示了周期性变化的快慢(比如说振动的快慢)。我们知道弹簧是有振动频率的、电磁波是有振荡频率的,光也是有频率的。频率就是这些物质的本质属性。
那凭什么是正弦/余弦的频率呀!
因为正弦/余弦函数是【二阶偏微分方程】(就是含有电容等元件的电路方程)的【本征解!】。
我们知道我们要把函数展开成三角不同频率的三角函数的和,而且系统对某种频率的【三】【角】【函】【数】的响应方式还是【同频率的三角函数】,所以响应也是对这些不同【三】【角】频率【响应的叠加】这叫什么,这就叫频域分析,这就叫信号与系统!!
我们再来看看傅立叶级数公式吧。
我们先来复习什么是投影吧。考虑一个简单的二维平面的例子。如下图所示,给定两个向量 u 和 v ,我们从 u 的末端出发作到 v 所在直线的垂线,得到一个跟 v 同向的新向量 p 。这个过程就称作 u 到 v 所在直线的投影,得到的新向量 p 就是 u 沿 v 方向的分量。图中的系数 c 是 p 跟 v 的比例,也就是 u 在 v 轴上的“坐标”。我们可以用尺规作图来完成投影这个动作,问题是:如果给定的向量 u 和 v 都是代数形式的,我们怎么用代数的方法求 c ?
我相信只要有基本线性代数知识的同学都可以轻松解决这个问题。我们知道 u-cv 这个向量是“正交”于 v 的,用数学语言表达就是 (u-cv)T v = 0。我们马上就可以得到 c 的表达式如下。
(1)
这里补充一点向量正交:
例如:a=(1,1,0),b=(1,-1,0) ,则内积(a,b)=1*1+1*(-1)+0*0=0,所以a,b正交。向量组两两正交就是其任意两个向量都正交。
2. 向量在一组正交基上的展开
在讲傅里叶级数之前,我们还需引进线性代数中“正交基”的概念。如果这个概念你觉得陌生,就把它想成是互相垂直的“坐标轴”。回到刚才这个例子,如下图所示,现在我们引进一组正交基 {v1,v2},那么 u 可以展开成以下形式
(2)
从图上来看,(2) 式其实说的是我们可以把 u“投影”到 v1 和 v2 这两个坐标轴上,c1 和 c2 就是 u 的新“坐标”。问题是:我们怎么求 c1 和 c2 呢?你会说,我们可以 (2) 式两边同时乘以 v1 或 v2,然后利用它们正交的性质来求 c1,c2。没错,数学上是这么做的。但是利用之前关于投影的讨论,我们可以直接得出答案,直接利用 (1) 式就可以得到如下的表达式:
(3)
3. 傅里叶级数的几何意义
现在我们已经明白一件事情了:如果想把一个向量在一组正交基上展开,也就是找到这个向量沿每条新“坐标轴”的“坐标”,那么我们只要把它分别投影到每条坐标轴上就好了,也就是把 (1) 式中的 v 换成新坐标轴就好了。说了半天,这些东西跟傅里叶级数有什么关系?我们先回忆一下傅里叶级数的表达式。给定一个周期是 2l 的周期函数 f(x),它的傅里叶级数为:
(4)
其中系数表达式如下:
(5)
我不喜欢记忆这些公式,有办法可以更好的理解他们来帮助记忆吗?答案是有的,那就是从几何的角度来看。傅里叶告诉我们,f(x) 可以用下面这组由无限多个三角函数(包括常数)组成的“正交基”来展开,
(6)
这里我们需要在广义上来理解“正交”。我们说两个向量,或两个函数之间是正交的,意思是它们的“内积”(inner product)为零。 “内积”在有限维的“向量空间”中的形式为“点积”(dot product)。在无限维的“函数空间”中,对于定义在区间 [a,b] 上的两个实函数 u(x),v(x) 来说,它们的内积定义为
(7)
正交基 (6) 中的每个函数都可以看做是一条独立的坐标轴,从几何角度来看,傅里叶级数展开其实只是在做一个动作,那就是把函数“投影”到一系列由三角函数构成的“坐标轴”上。上面 (5) 式中的系数则是函数在每条坐标轴上的坐标。
现在的问题是我们不能直接用 (1) 式来求这些坐标了,因为它只适用于有限维的向量空间。在无限维的函数空间,我们需要把 (1) 式中分子分母的点积分别替换成 (7) 式。那么 (5) 式中的所有系数马上可以轻松的写出:
(8)
值得注意的是,(8) 式中所有积分可以在任意一个长度是2l的区间内进行。也就是说,不管是 [-l,l] 还是 [0,2l],答案都是一样的。
有同学会说,老师上课教的是对 (4) 式两边乘以1,cos(nπx/l),或 sin(nπx/l), 然后积分,利用这些函数之间的正交性来得到 (5) 式。这些当然是对的,而且我们应该学会这种推导来加深对正交性的理解。但是在应用上,我更喜欢用几何的角度来看傅里叶级数,把函数看成是无限维的向量,把傅里叶级数跟几何中极其简单的“投影”的概念联系起来,这样学习新知识就变得简单了,而且可以毫无障碍的把公式记住,甚至一辈子都难忘。
熟悉傅里叶级数的同学会问,那么对于复数形式的傅里叶级数,我们是否也能用几何投影的观点来看,然后写出级数中的所有系数呢?答案是肯定的。给定一个周期是 2l 的周期函数 f(x),它的傅里叶级数的复数形式为:
(9)
其中系数表达式如下:
(10)
这意味着我们用了下面这组“正交基”来展开原函数,
(11)
我们之前提到了两个函数正交,意思是它们的内积为零。对于定义在区间 [a,b] 上的两个复函数 u(x),v(x) 来说,它们的内积定义为
(12)
其中v加上划线意思是它的共轭。(10) 中指数函数里的负号就是因为取了共轭的关系。
现在我们同样可以把原函数分别投影到 (11) 中的每个函数所在的“坐标轴”来求出对应的“坐标”,也就是系数cn:
(13)
这里我想强调一下这个“正交基”的重要性。在一个有限维的向量空间,给定任何向量都可以被一组基展开,它可以不必是正交的,这个时候展开项中的系数(也就是沿这组基中任一坐标轴的坐标)需要求解一个线性方程组来得到。只有当这组基是正交的时候,这些系数才能从给定向量往各坐标轴上投影得出,也就是 (1) 式。同样的,在无限维的函数空间,我们可以把一个函数在某个“基”中展开,但是只有在“正交基”中,展开项中的系数才能看成是函数投影的结果。
最后做一个总结,不管是向量 u 还是函数 u,他们都可以被一组正交基{vn:n=1,...,N}(有限个向量)或{vn:n=1,...,∞}(无限个函数)展开如下:
(14)
上式中的 cn 代表 u 在 vn 所在的坐标轴上投影产生的坐标。而 (14) 式中内积的定义视情况而定,在有限维的向量空间(实数域),向量 u 和 v 的内积是点积 uTv;在无限维的函数空间,函数 u(x) 和 v(x) 的内积的通用形式是 (12),如果它们是实函数,那么 (12) 就可以简化成 (7) 的形式。
我们可以看到,用几何投影的观点来看待傅里叶级数,理解变得更加容易,因为我相信所有人都能理解投影的概念;同时,傅里叶级数所有的公式都可以轻松的记住,想要遗忘都难了。我们在学习不同学科的时候可以经常的去做联系,尝试着用不同的角度去看待同一个问题,我相信这么做是很有好处的。
参考:http://blog.renren.com/share/343320656/15540620254/0
参考:http://www.360doc.com/content/13/0328/12/202378_274443797.shtml