Android ART 虚拟机简析

源码基于:Android U

1. prop

名称选项名称heap 变量名称功能

dalvik.vm.heapstartsize

MemoryInitialSize

initial_heap_size_

虚拟机在启动时,向系统申请的起始内存

dalvik.vm.heapgrowthlimit

HeapGrowthLimit

growth_limit_

应用可使用的 max heap,超过这个值就会产生 OOM

dalvik.vm.heapsize

MemoryMaximumSize

capacity_

特殊应用的内存最大值,需要在应用manifest.xml 中设定: android:largeHeap="true" 此时,变量growth_limit_ 被重置为capacity_ 另外,对于CC 收集器RegionSpace 的内存是 capacity_ * 2

dalvik.vm.foreground-heap-growth-multiplier

ForegroundHeapGrowthMultiplier

foreground_heap_growth_multiplier_

low memry模式下,且没有定义该prop 时,该值为 1.0f 如果定义了该prop,最终在prop值的基础上 +1.0f

dalvik.vm.heapminfree

HeapMinFree

min_free_

单次堆内存调整的最小值,也是管理内存需要的最小空闲内存

dalvik.vm.heapmaxfree

HeapMaxFree

max_free_

单次堆内存调整的最大值,也是管理内存需要的最大空闲内存

dalvik.vm.heaptargetutilization

HeapTargetUtilization

target_utilization_

堆目标利用率

首先,对比 dalvik.vm.heapsize 和 dalvik.vm.heapgrowthlimit 两个属性,在 ActivityThread.java 中handleBindApplication() 函数中会根据 android:largeHeap 属性确定使用哪个值为 heap 最大值:

        if ((data.appInfo.flags&ApplicationInfo.FLAG_LARGE_HEAP) != 0) {dalvik.system.VMRuntime.getRuntime().clearGrowthLimit();} else {// Small heap, clamp to the current growth limit and let the heap release// pages after the growth limit to the non growth limit capacity. b/18387825dalvik.system.VMRuntime.getRuntime().clampGrowthLimit();}

后面四个值用来确保每次GC 之后,java 堆已经使用和空闲的内存有一个合适的比例,这样可以尽量地减少GC 的次数。

调整的方式按照如下的规则:

art/runtime/gc/heap.ccvoid Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,size_t bytes_allocated_before_gc) {...if (gc_type != collector::kGcTypeSticky) {// Grow the heap for non sticky GC.uint64_t delta = bytes_allocated * (1.0 / GetTargetHeapUtilization() - 1.0);DCHECK_LE(delta, std::numeric_limits<size_t>::max()) << "bytes_allocated=" << bytes_allocated<< " target_utilization_=" << target_utilization_;grow_bytes = std::min(delta, static_cast<uint64_t>(max_free_));grow_bytes = std::max(grow_bytes, static_cast<uint64_t>(min_free_));target_size = bytes_allocated + static_cast<uint64_t>(grow_bytes * multiplier);next_gc_type_ = collector::kGcTypeSticky;}if (!ignore_target_footprint_) {SetIdealFootprint(target_size);...}

按照上面公式,假设 live_size=120M,target_utilization=0.75,max_free=8M,min_free=2M,那么:

delta =120M * (1/0.75 - 1)=40M

delta(40M) > max_free(8M)

target_size=120M + 8M = 128M,即堆的尺寸在此次 GC 之后调整到128M。

这个target_size 对应下文第 2.4 节中的 total_memory 值。对应的log 如下:

system_server: NativeAlloc concurrent copying GC freed 405107(20MB) AllocSpace objects, 238(4760KB) LOS objects, 33% free, 46MB/70MB, paused 83us,119us total 245.909mssystem_server: NativeAlloc concurrent copying GC freed 330013(15MB) AllocSpace objects, 67(1340KB) LOS objects, 33% free, 47MB/71MB, paused 94us,276us total 214.045mssystem_server: Background concurrent copying GC freed 302867(18MB) AllocSpace objects, 565(11MB) LOS objects, 32% free, 48MB/72MB, paused 588us,176us total 346.099mssystem_server: NativeAlloc concurrent copying GC freed 365830(18MB) AllocSpace objects, 254(5080KB) LOS objects, 33% free, 48MB/72MB, paused 143us,133us total 306.945mssystem_server: Background concurrent copying GC freed 235782(15MB) AllocSpace objects, 666(13MB) LOS objects, 33% free, 47MB/71MB, paused 83us,127us total 160.238ms

上面计算的 target_size 是下次申请内存时是否需要 GC 的一个重要指标,下面结合场景理解。

场景一:

target_size=128M,live_size=120M,如果此时需要分配一个1M 内存对象?

管理的内存最大为8M,当请求分配 1M 内存是,可用内存 8 - 1 = 7M > min_free,所以此次申请无需GC,也不用调整 target_size。

场景二:

target_size=128M,live_size=120M,如果此时需要分配一个7M 内存对象?

管理的内存最大为8M,当请求分配 7M 内存是,可用内存 8 - 7 = 1M < min_free,所以此次申请需要GC,且调整 target_size。

场景三:

target_size=128M,live_size=120M,如果此时需要分配一个10M 内存对象?

管理的内存最大为8M,当请求分配 10M 内存是,已经超过了 8M 空间,先GC 并调整target_size,再次请求分配,如果还是失败,将 target_size 调整为最大,再次请求分配,失败就再 GC一次软引用,再次请求,还是失败那就是OOM,成功后要调整 target_size。

所以,Android在申请内存的时候,可能先分配,也可能先GC,也可能不GC,这里面最关键的点就是内存利用率跟Free内存的上下限。

2. GC log

system_server: Background concurrent copying GC freed 82590(11MB) AllocSpace objects, 1139(22MB) LOS objects, 31% free, 52MB/76MB, paused 326us,284us total 302.779ms.mobile.service: Background young concurrent copying GC freed 185026(5214KB) AllocSpace objects, 60(7396KB) LOS objects, 59% free, 7072KB/17MB, paused 26.144ms,21us total 40.78

这里以 system_server 的 GC log 为例。

2.1 字段Background

这里展示是触发 GC 的原因,所有 GC 的原因都被记录在 gc_cause.h 中:

art/runtime/gc/gc_cause.henum GcCause {kGcCauseNone,kGcCauseForAlloc,kGcCauseBackground,kGcCauseExplicit,kGcCauseForNativeAlloc,...
};
indexname备注

kGcCauseNone

None

无效类型,用于占位

kGcCauseForAlloc

Alloc

分配失败时触发GC,分配会被block,直到GC 完成 通过new 分配新对象时,如果heap size 超过max,需要先GC

kGcCauseBackground

Background

后台GC 这里的“后台”并不是指应用切到后台才会执行的GC,而是GC在运行时基本不会影响其他线程的执行,所以也可以理解为并发GC。在每一次成功分配Java对象后,都会去检测是否需要进行下一次GC,这就是GcCauseBackground GC的触发时机。触发的条件需要满足一个判断,如果new_num_bytes_allocated(所有已分配的字节数,包括此次新分配的对象) >= concurrent_start_bytes_(下一次GC触发的阈值),那么就请求一次新的GC。

kGcCauseExplicit

Explicit

显示调用 System.gc() 触发的 GC

kGcCauseForNativeAlloc

NativeAlloc

当native 分配,出现内存紧张时触发GC 需要确认 native + java 的权重是否超过了总的heap size

2.2 字段 concurrent

这里展示的是 GC 的收集器名称,代表不同 GC 算法。所有GC 收集器定义在 collector_type.h 中:

art/runtime/gc/collector_type.henum CollectorType {kCollectorTypeNone,kCollectorTypeMS,kCollectorTypeCMS,kCollectorTypeCMC,kCollectorTypeSS,kCollectorTypeHeapTrim,kCollectorTypeCC,...
};
index收集器名称功能

kCollectorTypeMS

mark sweep

标记清除算法由标记阶段和清除阶段构成。 mark 阶段是把所有活动对象都做上标记,sweep 阶段是把那些没有标记的对象也就是非活动的对象进行回收的过程。通过这两个阶段,可以使用不用利用的内存空间重新得到利用。

kCollectorTypeCMS

concurrent mark sweep

并发的MS

kCollectorTypeCMC

concurrent mark compact

标记整理算法是将标记清除算法和复制算法相结合的产物。标记整理算法由标记阶段和压缩阶段构成。 mark 阶段是把所有活动对象都做上标记,compact 阶段通过数次搜索堆来重新装填活动对象。因 compact 而产生的优点是不用牺牲半个堆。

kCollectorTypeSS

semispace

综合了semi-space和mark-sweep,同时还支持compact

kCollectorTypeCC

concurrent copying

是对mark sweep 而导致内存碎片化的一个解决方案。 算法利用From 空间进行分配。当From 空间被完全占满时,GC 会将活动对象全部复制到To 空间。当复制完成后,该算法会把From 空间和To 空间互换,GC 也就结束了。From 空间和To 空间大小必须一致。这是为了保证能把From 空间中的所有活动对象都收纳到To 空间里。

2.3 GC freed 字段

GC freed 会统计两个数据:

  • AllocSpace objects,这里展示的是此次 GC 回收的非 LOS 的字节数;

  • LOS objects,这里展示的是此次 GC 回收的 LOS 的字节数;

2.4 31% free, 52MB/76MB 字段

这里展示当前进程在此次 GC 之后的内存情况。

这里记录已经分配的总内存(记作 current_heap_size)已经分配内存的最大值 (记作 total_memory,这个值不会超过最大值)。

52 M 就是 current_heap_size,76M 就是total_memory。

free 百分比 = (total_memory - current_heap_size) / total_memory

2.5 paused 字段

这里展示当前进程在此次GC 中应用挂起的时间以及次数。

每次挂起的时间都会打印出来,中间用逗号分隔。

2.6 total 字段

这里展示当前进程在此次 GC 中完成所需要的时间,其中包括 paused 时间。

2.7 源码

源码于 art/runtime/gc/heap.cc

 art/runtime/gc/heap.ccvoid Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {...LOG(INFO) << gc_cause << " " << collector->GetName()<< (is_sampled ? " (sampled)" : "")<< " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("<< PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "<< current_gc_iteration_.GetFreedLargeObjects() << "("<< PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "<< percent_free << "% free, " << PrettySize(current_heap_size) << "/"<< PrettySize(total_memory) << ", " << "paused " << pause_string.str()<< " total " << PrettyDuration((duration / 1000) * 1000);...
}

3. 收集机制简介

Heap 类提供了三种GC 接口:

  • CollectGarbage(),用来执行显示GC,例如 system.gc() 接口;

  • ConcurrentGC(),用来执行并行GC,只能被 ART 运行时内部的GC 守护线程调用;

  • CollectGarbageInternal(),ART运行时内部调用的GC 接口,可以执行各种类型的GC;

ART runtime 将空间划分:Image Space、Malloc Space、Zygote Space、Bump Pointer Space、Region Space、Large Object Space。

art/runtime/gc/space/space.henum SpaceType {kSpaceTypeImageSpace,kSpaceTypeMallocSpace,kSpaceTypeZygoteSpace,kSpaceTypeBumpPointerSpace,kSpaceTypeLargeObjectSpace,kSpaceTypeRegionSpace,
};

其中前面都是在地址空间上连续的,即 Continuous Space,而 Large Object Space 是一些离散地址的集合,用来分配一些大对象,称为Discontinuous Space。

原先Davlik虚拟机使用的是传统的 dlmalloc 内存分配器进行内存分配。这个内存分配器是Linux上很常用的,但是它没有为多线程环境做过优化,因此Google为ART虚拟机开发了一个新的内存分配器:RoSalloc,它的全称是Rows of Slots allocator。RoSalloc相较于dlmalloc来说,在多线程环境下有更好的支持:在dlmalloc中,分配内存时使用了全局的内存锁,这就很容易造成性能不佳。而在RoSalloc中,允许在线程本地区域存储小对象,这就是避免了全局锁的等待时间。ART虚拟机中,这两种内存分配器都有使用。

Heap 类的 Heap::AllocObject是为对象分配内存的入口,如下:

art/runtime/gc/heap.htemplate <bool kInstrumented = true, typename PreFenceVisitor>mirror::Object* AllocObject(Thread* self,ObjPtr<mirror::Class> klass,size_t num_bytes,const PreFenceVisitor& pre_fence_visitor)REQUIRES_SHARED(Locks::mutator_lock_)REQUIRES(!*gc_complete_lock_,!*pending_task_lock_,!*backtrace_lock_,!process_state_update_lock_,!Roles::uninterruptible_) {//AllocObjectWithAllocator() 实现在 heap-inl.h 中return AllocObjectWithAllocator<kInstrumented>(self,klass,num_bytes,GetCurrentAllocator(),pre_fence_visitor);}

会首先通过 Heap::TryToAllocate尝试进行内存的分配。在 Heap::TryToAllocate方法,会根据AllocatorType,选择不同的Space进行内存的分配。在 Heap::TryToAllocate 方法失败时,会调用 Heap::AllocateInternalWithGc 进行 GC,然后在尝试内存的分配。

参考:

https://developer.aliyun.com/article/652546#slide-5

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/329648.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

先进电气技术 —— 控制理论中的“观测器”概述

一、背景 观测器在现代控制理论中的地位十分重要&#xff0c;它是实现系统状态估计的关键工具。观测器的发展历程可以从以下几个方面概述&#xff1a; 1. 起源与发展背景&#xff1a; 观测器的概念源于对系统状态信息的需求&#xff0c;特别是在只能获取部分或间接输出信息…

如何在.NET中集成SignalR

SignalR 简介 SignalR是一个开放源代码库&#xff0c;可用于简化向应用添加实时Web功能&#xff0c;实时Web功能使服务器端代码能够将内容推送到客户端。 SignalR开源库&#xff1a;https://github.com/SignalR/SignalR SignalR 应用场景 需要高频次从服务器获取信息的应用&am…

java-spring 14 项目启动过程

Spring的启动流程可以归纳为三个步骤&#xff1a; 1、初始化Spring容器&#xff0c;注册内置的BeanPostProcessor的BeanDefinition到容器中 2、将配置类的BeanDefinition注册到容器中 3、调用refresh()方法刷新容器 // 初始化容器 public AnnotationConfigApplicationContex…

弘君资本股市技巧:限售股解禁对市场有何影响?

限售股解禁意味着本来不能在商场上自由生意的股票能够进入二级商场流通了&#xff0c;限售股解禁往往会引起投资者们的高度关注。关于限售股解禁对商场有何影响&#xff0c;弘君资本下面就为大家具体介绍一下。 限售股解禁的影响&#xff1a; 1、股价跌落压力增大。当限售股解…

二.常见算法--贪心算法

&#xff08;1&#xff09;单源点最短路径问题 问题描述&#xff1a; 给定一个图&#xff0c;任取其中一个节点为固定的起点&#xff0c;求从起点到任意节点的最短路径距离。 例如&#xff1a; 思路与关键点&#xff1a; 以下代码中涉及到宏INT_MAX,存在于<limits.h>中…

彩色进度条(C语言版本)

.h文件 #include<stdio.h> #include<windows.h>#define NUM 101 #define LOAD_UP 50 #define LOAD_DOWN 60 #define SLEEP_SLOW 300 #define SLEEP_FAST 70 版本1&#xff1a;&#xff08;初始版&#xff09; //v1 #include "progress.h" int main() …

【云原生】Kubernetes基础命令合集

目录 引言 一、命令概述 &#xff08;一&#xff09;命令分类 &#xff08;二&#xff09;基本语法 二、查看基本信息 &#xff08;一&#xff09;环境指令 1.查看版本信息 2.查看资源对象简写 3.添加补全信息 4.查看日志 5.查看集群信息 &#xff08;二&#xff0…

vue打包部署到springboot,通过tomcat运行

tomcat默认端口 8080springboot端口 9132vue 端口 9131 框架 项目是基于SpringBootVue前后端分离的仓库管理系统 后端&#xff1a;SpringBoot MybatisPlus前端&#xff1a;Node.js Vue element-ui数据库&#xff1a;mysql 一. 打包Vue项目 cmd中输入命令 npm run build 后…

【施磊】C++语言基础提高:深入学习C++语言先要练好的内功

课程总目录 文章目录 一、进程的虚拟地址空间内存划分和布局二、函数的调用堆栈详细过程三、程序编译链接原理1. 编译过程2. 链接过程 一、进程的虚拟地址空间内存划分和布局 任何的编程语言 → \to → 产生两种东西&#xff1a;指令和数据 编译链接完成之后会产生一个可执行…

python将程序运行结果存入txt文本

//其实就是运行下面代码&#xff0c;然后下面代码会通过subprocess再去运行script.py&#xff08;我们的程序代码&#xff09;&#xff0c;然后把它写入oput.txt中。 import subprocess with open(oput.txt, w) as f:subprocess.run([python, script.py], stdoutf, stderrsu…

XX数字中台技术栈及能力

XX数字中台技术栈及能力 1 概述 XX数字中台面向数据开发者、数据管理者和数据应用者&#xff0c;提供数据汇聚、融合、治理、开发、挖掘、共享、可视化、智能化等能力&#xff0c;实现数据端到端的全生命周期管理&#xff0c;以共筑数字基础底座&#xff0c;共享数据服务能力…

酷开系统 | 酷开科技把握智慧先机 AI赋能家庭场景

智慧化是当今世界科技发展的前沿领域之一。现在的智慧化&#xff0c;也正在逐步成为我们日常生活的一部分。电视系统也进入了数字化时代&#xff0c;AI的应用正在不断扩展&#xff0c;其潜力似乎无穷无尽。 酷开科技深耕人工智能技术&#xff0c;在提升语音体验、强化智能家居…

目前流行的前端框架有哪些?

目前流行的前端框架有很多&#xff0c;它们可以帮助开发者快速构建高质量的前端应用程序。本文将介绍一些目前比较受欢迎的前端框架&#xff0c;并分析它们的优缺点。 React React 是一个由 Facebook 开发的开源前端JavaScript库&#xff0c;用于构建用户界面&#xff0c;尤其…

在vue中实现下载文件功能

实际操作为&#xff0c;在表格中 我们可以获取到文件的id&#xff0c;通过插槽就可以实现 <template #default"scope"><el-button type"text" click"handleDown(scope.row)"><span>下载</span></el-button> </…

计算机毕业设计 | springboot+vue汽车修理管理系统 汽修厂系统(附源码)

1&#xff0c;项目背景 在如今这个信息时代&#xff0c;“汽车维修管理系统” 这种维修方式已经为越来越多的人所接受。在这种背景之下&#xff0c;一个安全稳定并且强大的网络预约平台不可或缺&#xff0c;在这种成熟的市场需求的推动下&#xff0c;在先进的信息技术的支持下…

网络协议——Modbus-TCP

目录 1、简介 2、Modbus-TCP与Modbus-RTU的区别 3、消息格式 4、功能码01H 5、功能码02H 6、功能码03H 7、功能码04H 8、功能码05H 9、功能码06H 10、功能码0FH 11、功能码10H 1、简介 Modbus-TCP&#xff08;Modbus Transmission Control Protocol&#xff09;是一…

嵌入式学习——3——TCP-UDP 数据交互,握手,挥手

1、更新源 cd /etc/apt/ sudo cp sources.list sources.list.save 将原镜像备份 sudo vim sources.list 将原镜像修改成阿里源/清华源&#xff0c;如所述 阿里源 deb http://mirrors.aliyun.com/ubuntu/ bionic main …

【qt】QListWidget 组件

QListWidget 组件 一.QListWidget的用途二.界面设计三.QListWidget的添加1.界面添加2.代码添加 四.列表项的设置1.文本2.图标3.复选框4.列表大小 五.字体和图标的设置1.字体&#xff1a;2.图标&#xff1a; 六.设置显示模式1.图标2.列表 七.其他功能实现1.删除2.全选3.反选4.ad…

小微企业管理系统如何选择等保服务?

小微企业在选择等保&#xff08;信息安全等级保护&#xff09;服务时&#xff0c;应当考虑以下几个关键点以确保既能符合法规要求&#xff0c;又能在成本效益上做出合理决策&#xff1a; 了解等保需求&#xff1a;首先&#xff0c;小微企业需要了解自身的业务性质和信息系统的重…

30.包名的修改和新建后端模块

权限和第三方登录确实令人头疼,我们来学一点简单一点的。 另外,如果各位有属于自己的域名和ICP/IP备案,布置一个作业,自行实现第三方QQ登录。 我们所说的包名修改,是一次性修改ruoyi的全部包名,因为发现很多人有这样的需求,下载别人的代码,想要改成自己公司的包名,结…