AGI系列(1):掌握AI大模型提示词优化术,提问准确率飙升秘籍

当我们向AI大模型提问时,通常人们的做法是有什么问题,就直接去问,得到大模型的回复结果,时好时坏,完全没有可控性。
那么有没有一种方式或是一套方法,可以让我们向大模型提问时,得到的结果更准确,实际上是是有的,我们本文就来探讨下。

例子引入

我们来举个具体的例子:

场景:
假设你是一名社交媒体经理,你需要帮助起草一篇 Facebook 帖子来宣传你公司的新产品。

那么通常的做法,我们会是,直接向大模型提问:

Prompt:
写一篇Facebook帖子为我公司的新产品做广告。我公司的名字叫Alpha,产品叫Beta,一种新型的超快吹风机。

我们用 GPT-4o 来输出答案:

亲爱的网友们,我很高兴能在这里向大家介绍Alpha公司新推出的产品——Beta超快吹风机!Beta不仅仅是一款吹风机,它是我们对美与速度的独特诠释。这款产品采用尖端科技,能以迅雷不及掩耳之势将你的头发吹干。更不用说,Beta能在保护你的发丝免受热损的前提下,而实现快速吹干。我们Beta的设计理念是结合速度与舒适,我们相信,通过使用Beta,你也将能享受到这种特别的体验。在早上忙碌的日程中,或是赶着出门的时候,Beta都将是你的最佳伴侣。我们在Alpha,始终坚持以客户满意度为中心的服务理念,Beta正是对此承诺的实现。所以,尝试一下吧,让我们的Beta超快吹风机带给你的生活更多的便利和乐趣。期待您的反馈,让我们共同体验以客户为中心的Alpha服务。#Alpha #Beta超快吹风机。

不错,GPT-4o 能够很好的输出想要的内容。但是总感觉有点差强人意,机翻,没有人情味和个性化的感觉。

那么有没有一套可以遵循的方法来解决这个问题呢?

有的,现在,我就来介绍这个方法:CO-STAR 法

可复用方法的介绍

CO-STAR 法其实是一套框架,用框架或模板的方式来撰写提示词。

其组成可用如下图表示:

在这里插入图片描述
CO-STAR 是结构化的Prompt模版六大要素的首字母缩写,即:

(C) Context 上下文:为任务提供背景信息 通过为大语言模型(LLM)提供详细的背景信息,可以帮助它精确理解讨论的具体场景,确保提供的反馈具有相关性。

(O) Objective 目标:明确你要求大语言模型完成的任务 清晰地界定任务目标,可以使大语言模型更专注地调整其回应,以实现这一具体目标。

(S) Style 风格:明确你期望的写作风格 你可以指定一个特定的著名人物或某个行业专家的写作风格,如商业分析师或 CEO。这将指导大语言模型以一种符合你需求的方式和词汇选择进行回应。

(T) Tone 语气:设置回应的情感调 设定适当的语气,确保大语言模型的回应能够与预期的情感或情绪背景相协调。可能的语气包括正式、幽默、富有同情心等。

(A) Audience 受众:识别目标受众 针对特定受众定制大语言模型的回应,无论是领域内的专家、初学者还是儿童,都能确保内容在特定上下文中适当且容易理解。

(R) Response响应:规定输出的格式 确定输出格式是为了确保大语言模型按照你的具体需求进行输出,便于执行下游任务。常见的格式包括列表、JSON 格式的数据、专业报告等。对于大部分需要程序化处理大语言模型输出的应用来说,JSON 格式是理想的选择。

复用方法之后的效果

我们来看看效果如何:

提示词:

# CONTEXT #
我想为我公司的新产品做广告。我公司的名字叫Alpha,产品叫Beta,是一种新型的超快吹风机。# OBJECTIVE #
为我创建一个Facebook帖子,旨在让人们点击产品链接进行购买。# STYLE #
遵循成功公司为类似产品做广告的写作风格,比如戴森。# TONE #
有说服力的# AUDIENCE #
我公司在Facebook上的受众群通常是老一辈。定制你的帖子,以针对这些受众在头发产品中通常想要的东西。# RESPONSE #
Facebook上的帖子简洁而有影响力。

GPT-4o 的输出:

🎉🎉【Alpha公司新品发布】🎉🎉致亲爱的朋友们,我们很高兴地向您推出我们新一代的产品——Beta超快吹风机!💖💖沿着戴森的卓越传统,Beta吹风机结合了快速、高效和温柔-全部装在一台设计精美的工具里。😲您是否厌倦了等待头发干燥的漫长时间?是否在寻找一款吹风机,既可以快速干燥头发,又能全程呵护秀发,避免发质受损?Beta是您一直在寻找的答案!❤️👏它速度快,能够在最短的时间内达到最佳的干燥效果。更重要的是,我们的独家温控科技确保了温度始终适中,既不会对头发造成损害,也不会让您的头皮感到不适。👍✨走到人群中,洋溢着自信,让人眼前一亮的那个人,就是您!点击下方的链接,立即购买我们的Beta超快吹风机,走在最前端的流行趋势上,给您的日常生活带来便利!💃🕺Alpha公司与您一起,让美丽变得如此简单!🌺💖[产品链接]立即行动,让我们一起享受快乐,享受美丽,享受生活吧!💝

可以看出,应用了CO-STARPrompt的输出更加有针对性,也更具体,有效。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/332339.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入理解 Mysql 分层架构:从存储引擎到查询优化器的内部机制解析

一、基础架构 1.连接器 1.会先连接到这个数据库上,这时候接待你的就是连接器。连接器负责跟客户端建立连接、获取权限、维持和管理连接 2.用户密码连接成功之后,会从权限表中拿出你的权限,后续操作权限都依赖于此时拿出的权限,这就意味着当链…

web如何做接口层面自动化测试?

接口层面约等于集成化测试,且需要启动web容器 一般web项目的,代码都是按照分层开发的,业务主要是集中在service和dao层,而我们如果仅仅是利用之前的单元测试,然后把依赖的代码直接mock掉,仅仅测试controller这一块是没…

java “错误:编码GBK 的不可映射字符”

环境:JDK-17 本机编码:utf-8 代码编码:GBK 错误:java “错误:编码GBK 的不可映射字符” 解决1:记事本打开java源文件,另存为选择ANSI编码 解决2:复制代码再将编码格式改为utf-8,…

网络原理-以太网协议和DNS协议

一、以太网协议 以太网协议会涉及到数据链路层和物理层。 如图: 这里面的目的地址和源地址指的并不是IP地址,而是MAC地址(物理地址)。长度为6个字节。即最多能表示2^48 个地址,也是非常大的,足够给全球每个设备都分配一个地址,因此在网卡出厂的时候都会带有一个唯…

电子技术学习路线

在小破站上看到大佬李皆宁的技术路线分析,再结合自己这几年的工作。发现的确是这样,跟着大佬的技术路线去学习是会轻松很多,现在想想,这路线其实跟大学四年的学习顺序是很像的。 本期记录学习路线,方便日后查看。 传统…

5月23日学习记录

[CSAWQual 2019]Unagi 涉及:xxe漏洞,外来编码xml绕过 打开环境,发现存在文件上传 简单上传一个php 毫无疑问上传失败,说是存在waf,绕过waf才能上传,点击here看看 xml编码,可能存在xxe漏洞&…

Point-Nerf 理论笔记和理解

文章目录 什么是point nerf 和Nerf 有什么区别Point Nerf 核心结构有哪些?什么是point-based radiance field? 点云位置以及置信度是怎么来Point pruning 和 Point Growing 什么是point nerf 和Nerf 有什么区别 基本的nerf 是通过过拟合MLP来完成任意视角场景的重…

c#核心学习1

一、面向对象的概念 1.面向过程编程 2.面向对象编程 3.为什么要学习面向对象编程 提高代码复用率、提高开发效率、提高程序可拓展性、清晰的逻辑关系 4.如何学习 二、面向对象--封装 1)类和对象 1.什么是类 2.类申明在哪里 类一般声明在namespace语句块中 3.…

摄像头应用测试

作者简介: 一个平凡而乐于分享的小比特,中南民族大学通信工程专业研究生在读,研究方向无线联邦学习 擅长领域:驱动开发,嵌入式软件开发,BSP开发 作者主页:一个平凡而乐于分享的小比特的个人主页…

【操作系统】发展与分类(手工操作、批处理、分时操作、实时操作)

2.操作系统发展与分类 思维导图 手工操作阶段(此阶段无操作系统) 需要人工干预 缺点: 1.用户独占全机,资源利用率低; 2.CPU等待手工操作,CPU利用不充分。 批处理阶段(操作系统开始出现&#x…

【JavaScript】初识 Promise

出现原由 先看一个例子: 模拟发送表白信息,如果一个失败,那么再给其他人发送,这时就相当于在失败回调函数中套了一层回调;如果后续还有多个表白对象,那么将一层一层地嵌套下去,也就是回调地狱…

Generative Action Description Prompts for Skeleton-based Action Recognition

标题:基于骨架的动作识别的生成动作描述提示 源文链接:https://openaccess.thecvf.com/content/ICCV2023/papers/Xiang_Generative_Action_Description_Prompts_for_Skeleton-based_Action_Recognition_ICCV_2023_paper.pdfhttps://openaccess.thecvf.c…

正运动控制器:视觉纠偏和找孔

一、用户主界面CCD参数设置 通过主界面CCD参数设置,学习如何操作计算相机中心与电批中心的偏移量,以及相机标定的功能。 1、相机中心与电批中心的偏移量计算 1.1、在用户主界面点击CCD参数按钮,进入CCD设置界面。 主界面 CCD参数设置界面 1…

显存碎片化与CUDA OOM解决

目录 一.显存碎片化与CUDA OOM解决 1.查看显卡内存容量 2.显存碎片化 (1)如何理解显存中“已分配”和“未分配”的内存块? (2)碎片化形成的原因? (3)如何减轻显存碎片化? 3.实…

空间注意力机制

第一步是沿着通道维度进行最大池化和平均池化,比如下面3*3的特征图,有3个通道。 第二步新特征图进行拼接并经过卷积调整通道数 第三步经过Sigmoid函数后乘到输入上 代码: class SpatialAttention(layers.Layer):def __init__(self):super(S…

Hibernate

主流ORM框架Object Relation Mapping对象关系映射,将面向对象映射成面向关系。 如何使用 1、导入相关依赖 2、创建Hibernate配置文件 3、创建实体类 4、创建实体类-关系映射文件 5、调用Hibernate API完成操作 具体操作 1、创建 Maven工程,在pom.xml中导…

Milvus Cloud 非结构化数据平台

从技术面来看,向量数据库底座自然而然向外延伸的产品包含: 1)向量提取,从非结构化数据中提取向量,这是向量数据库上游的工作,十分重要; 2)模型选择,选择正确的模型,能够更精准、更高质量地提取向量; 3)映射管理,即管理数据的本体和数据的语义层之间的映射,在…

【Linux杂货铺】进程通信

目录 🌈 前言🌈 📁 通信概念 📁 通信发展阶段 📁 通信方式 📁 管道(匿名管道) 📂 接口 ​编辑📂 使用fork来共享通道 📂 管道读写规则 &…

01.并发编程简介

1 什么是并发编程 所谓并发编程是指在一台处理器上“同时”处理多个任务。并发是在同一实体上的多个事件。多个事件在同一时间间隔发生。 2 为什么我们要学习并发编程? 最直白的原因就是因为面试需要,大厂的 Java 岗的并发编程能力属于标配。 而在非大厂…

【Python特征工程系列】一文教你使用PCA进行特征分析与降维(案例+源码)

这是我的第287篇原创文章。 一、引言 主成分分析(Principal Component Analysis, PCA)是一种常用的降维技术,它通过线性变换将原始特征转换为一组线性不相关的新特征,称为主成分,以便更好地表达数据的方差。 在特征重要…