【Python特征工程系列】一文教你使用PCA进行特征分析与降维(案例+源码)

这是我的第287篇原创文章。

一、引言

      主成分分析(Principal Component Analysis, PCA)是一种常用的降维技术,它通过线性变换将原始特征转换为一组线性不相关的新特征,称为主成分,以便更好地表达数据的方差。

      在特征重要性分析中,PCA 可以用于理解数据中最能解释方差的特征,并帮助识别对目标变量影响最大的特征。可以通过查看PCA的主成分(主特征向量)以及各主成分所对应的特征重要性来推断哪些原始特征在新特征中起到了较大影响。

      PCA 的局限性:

  • PCA 是一种线性变换方法,可能无法很好地处理非线性关系的数据。
  • PCA 可能会丢失一些信息,因为它主要关注的是数据中的方差,而忽略了其他方面的信
  • PCA 假设主成分与原始特征之间是线性关系,这在某些情况下可能不成立。

二、实现过程

2.1 读取数据

# 准备数据
data = pd.read_csv(r'dataset.csv')
df = pd.DataFrame(data)
print(df)
# 目标变量和特征变量
target = 'target'
features = df.columns.drop(target)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df[features], df[target], test_size=0.2, random_state=0)

df:

图片

2.2 对训练集做PCA主成分分析

自主选择主成分,并打印出每个主成分的解释性方差:

pca = PCA(n_components='mle')
pca.fit(X_train)
var_ratio = pca.explained_variance_ratio_
for idx, val in enumerate(var_ratio, 1):print("Principle component %d: %.2f%%" % (idx, val * 100))
print("total: %.2f%%" % np.sum(var_ratio * 100))

结果:

图片

共计10个主成分。

2.3 通过主成分分析原始特征重要性

打印出每个特征对于主成分的系数,这反映了原始特征的重要性:

print(pca.components_)

结果:

图片

通过计算10个主成分中,每个原始特征的系数绝对值之和作为该特征的最终贡献度:

# 计算原始特征与主成分的相关性(绝对值)
feature_importance = np.abs(pca.components_)
# 计算每个主成分中原始特征的权重(系数)和
feature_importance_sum = np.sum(feature_importance, axis=0)
# 打印原始特征的重要性(贡献度)
print("\n原始特征的重要性(贡献度):")
ranking_df = pd.DataFrame({'特征': features, '贡献度': feature_importance_sum})
ranking_df = ranking_df.sort_values(by='贡献度')
print(ranking_df)

结果:

图片

可视化:

图片

2.4 查看累计解释方差比率与主成分个数的关系

fig, ax = plt.subplots(figsize=(10, 7))
ax.plot(np.arange(1, len(var_ratio) + 1), np.cumsum(var_ratio), "-ro")
ax.set_title("Cumulative Explained Variance Ratio", fontsize=15)
ax.set_xlabel("number of components")
ax.set_ylabel("explained variance ratio(%)")
plt.show()

结果:

图片

前2个主成分累计解释性方差比率接近0.9,前3个主成分累计解释方差比率超过0.95。

2.5 自动选择最优的主成分个数

设定累计解释方差比率的目标,让sklearn自动选择最优的主成分个数:

target = 0.9  # 保留原始数据集90%的变异
res = PCA(n_components=target).fit_transform(X_train)
print("original shape: ", X_train.shape)
print("transformed shape: ", res.shape)

结果:

图片

选择了3个主成分。

2.6 主成分选择可视化(以2个主成分为例)

选择两个主成分,并进行可视化:

pca=PCA(n_components=2)  #加载PCA算法,设置降维后主成分数目为2
reduced_x=pca.fit_transform(X_train)#对样本进行降维
principalDf = pd.DataFrame(data = reduced_x, columns = ['principal component 1', 'principal component 2'])
print(principalDf)
y_train = np.array(y_train)
yes_x,yes_y=[],[]
no_x,no_y=[],[]
for i in range(len(reduced_x)):if y_train[i] ==1:yes_x.append(reduced_x[i][0])yes_y.append(reduced_x[i][1])elif y_train[i]==0:no_x.append(reduced_x[i][0])no_y.append(reduced_x[i][1])
plt.scatter(yes_x,yes_y,c='r',marker='x')
plt.scatter(no_x,no_y,c='b',marker='D')
plt.xlabel("First Main Component")
plt.ylabel("Second Main Component")
plt.show()

结果:

图片

可以看出2个主成分可以大概划分出两类。

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/332306.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】二叉树的认识与实现

目录 二叉树的概念: 二叉树的应用与实现: 二叉树实现接口: 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树 二叉树节点个数​编辑 二叉树叶子节点个数 二叉树第k层节点个数 二叉树查找值为x的节点​编辑 二叉树前序遍…

全网讲的最详细的Docker镜像分层存储原理

先说结论,容器镜像分层存储图示 欢迎关注 实验环境准备 当前实验docker版本24.0.7如下,当前docker版本使用overlay2机制存储镜像 Client: Docker Engine - CommunityVersion: 24.0.7API version: 1.43Go version: go1.20.10…

Redis第18讲——Redis和Redission实现延迟消息

即使不是做电商业务的同学,也一定知道订单超时关闭这种业务场景,这个场景大致就是用户下单后,如果在一定时间内未支付(比如15分钟、半小时),那么系统就会把这笔订单给关闭掉。这个功能实现的方式有很多种&a…

《Ai学习笔记》-模型集成部署

后续大多数模型提升速度和精度: 提升速度: -知识蒸馏,以distillBert和tinyBert为代表 -神经网络优化技巧。prune来剪裁多余的网络节点,混合精度(fp32和fp26混合来降低计算精度从从而实现速度的提升) 提…

【Week-R1】RNN实现心脏病预测,基于tensorflow框架

文章目录 一、什么是RNN?二、准备环境和数据2.1 导入数据 三、构建模型四、训练和预测五、其他(1)sklearn模块导入报错:ModuleNotFoundError: No module named sklearn(2)优化器改为SGD,accurac…

SVM兵王问题

1.流程 前面六个就是棋子的位置,draw就是逼和,后面的数字six就代表,白棋最少用六步就能将死对方。然后呢,可以看一下最后一个有几种情况: 2.交叉测试 leave one out: 留一个样本作测试集,其余…

基于51单片机的超声波液位测量与控制系统

基于51单片机液位控制器 (仿真+程序+原理图PCB+设计报告) 功能介绍 具体功能: 1.使用HC-SR04测量液位,LCD1602显示; 2.当水位高于设定上限的时候,对应声光报警报警&am…

【ai】pycharm安装langchain 相关module

pycharm module install 【Python学习 】一篇文章教你PyCharm如何快速安装module 【python】pycharm如何安装python的模块包版本 2024.1.2 RC2 找到当前的虚拟项目 找到解释器 我现在配置为专门为openai-start 准备的3.10 版本+ 号可以找到模块

leetcode-顺时针旋转矩阵-111

题目要求 思路 1.假设现在有一个矩阵 123 456 789 2.我们可以根据19这个对角线将数据进行交换&#xff0c;得到矩阵 147 258 369 3.然后将矩阵每一行的数据再翻转&#xff0c;得到矩阵 741 852 963 代码实现 class Solution { public:vector<vector<int> > rot…

设计模式深度解析:分布式与中心化,IT界两大巨头“华山论剑”

​&#x1f308; 个人主页&#xff1a;danci_ &#x1f525; 系列专栏&#xff1a;《设计模式》《MYSQL应用》 &#x1f4aa;&#x1f3fb; 制定明确可量化的目标&#xff0c;坚持默默的做事。 ✨IT界的两大巨头交锋✨ &#x1f44b; 在IT界的广阔天地中&#xff0c;有两座…

JavaFX安装与使用

前言 最近学习了javafx,开始时在配置环境和导包时遇到了一些麻烦,关于网上很多方法都尝试过了,现在问题都解决了,和大家分享一下我是怎么实现javafx的配置,希望大家可以通过这个方法实现自己的环境配置! &#x1f648;个人主页: 心.c &#x1f525;文章专题:javafx &#x1f49…

嵌入式实时操作系统笔记1:RTOS入门_理解简单的OS系统

今日开始学习嵌入式实时操作系统RTOS&#xff1a;UCOS-III实时操作系统 本次目标是入门RTOS&#xff0c;理解多任务系统...... 本文只是个人学习笔记&#xff0c;基本都是对网上资料的整合...... 目录 STM32裸机与RTOS区别&#xff1a; 裸机中断示例&#xff1a; RTOS对优先级…

9.Docker网络

文章目录 1、Docker网络简介2、常用基本命令3、网络模式对比举例3.1、bridge模式3.2、host模式3.3、none模式3.4、container模式3.5、自定义网络 1、Docker网络简介 作用&#xff1a; 容器间的互联和通信以及端口映射容器IP变动时候可以通过服务名直接进行网络通信而不受到影…

如何用ai打一场酣畅淋漓的数学建模比赛? 给考研加加分!

文章目录 数学建模比赛1. 数学建模是什么&#xff1f;2. 数学建模分工合作2.1 第一&#xff1a;组队和分工合作2.2 第二&#xff1a;充分的准备2.3 第三&#xff1a;比赛中写论文过程 3. 数学建模基本过程4. 2023全年数学建模竞赛时间轴5. 数学建模-资料大全6. 数学建模实战 数…

H3CNE-7-TCP和UDP协议

TCP和UDP协议 TCP&#xff1a;可靠传输&#xff0c;面向连接 -------- 速度慢&#xff0c;准确性高 UDP&#xff1a;不可靠传输&#xff0c;非面向连接 -------- 速度快&#xff0c;但准确性差 面向连接&#xff1a;如果某应用层协议的四层使用TCP端口&#xff0c;那么正式的…

2024GDCPC广东省赛记录

比赛流程体验&#xff0c;依托&#xff0c;开赛几分钟了&#xff0c;选手还卡在门外无法入场&#xff0c;也没给延时&#xff0c;说好的桌上会发三支笔&#xff0c;于是我们就没准备&#xff0c;要了三次笔&#xff0c;终于在一小时后拿到了&#x1f605; 比赛题目体验&#xf…

【FPGA】Verilog:奇校验位生成器的实现(Odd Parity bit generator)

解释奇数奇偶校验位生成器和检查器的仿真结果及过程。 真值表和卡洛图: Odd Parity Bit Generator A B C

屎山代码SSM转换Springboot

SSM项目转Springboot项目 最近很多人可能是在网上买的那种屎山代码&#xff0c;数据库都是拼音的那种 比如项目如下所示&#xff1a; 这种屎山代码我改过太多了&#xff0c;很多人可能无从下手&#xff0c;因为代码结构太混乱了&#xff0c;但是我改过太多这种代码&#xff0…

ML307R OpenCPU 数据保存文件系统fs使用

一、函数介绍 二、实现数据保存 三、代码下载地址 一、函数介绍 以下是cm_fs.h里面的函数介绍 /*** brief 文件指针定位** param [in] fd 文件描述符* param [in] offset 指针偏移量* param [in] base 偏移起始点&#xff0c;CM_FS_SEEK_SET&#xff1a;文件开头 CM_FS…

基于springboot+vue的4S店车辆管理系统

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;…