PyTorch学习笔记:新冠肺炎X光分类

前言

目的是要了解pytorch如何完成模型训练
https://github.com/TingsongYu/PyTorch-Tutorial-2nd参考的学习笔记


数据准备

由于本案例目的是pytorch流程学习,为了简化学习过程,数据仅选择了4张图片,分为2类,正常与新冠,训练集2张,
验证集2张。标签信息存储于TXT文件中。具体目录结构如下:

注意:covid-19的图可以找到但是no-finding两张图没有找到
covid-19-1
covid-19-2
no-finding的图随便照两张看着正常的,别问我哪个是正常的,我也不知道(❍ᴥ❍ʋ),需要改名字为00001215_000.png00001215_001.png

├─imgs
│  ├─covid-19
│  │      auntminnie-a-2020_01_28_23_51_6665_2020_01_28_Vietnam_coronavirus.jpeg
│  │      ryct.2020200028.fig1a.jpeg
│  │
│  └─no-finding
│         00001215_000.png
│         00001215_001.png
│
└─labelstrain.txtvalid.txt

创建标签文件:

创建 train.txt 和 valid.txt 文件,并填入图片路径和标签信息

  • train.txt:
covid-19/auntminnie-a-2020_01_28_23_51_6665_2020_01_28_Vietnam_coronavirus.jpeg 1
no-finding/00001215_000.png 0
  • valid.txt:
covid-19/ryct.2020200028.fig1a.jpeg 1
no-finding/00001215_001.png 0

完整代码示例:

以下是准备数据集、定义模型和训练模型的完整代码示例:

import os
from PIL import Image
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F# 自定义数据集类
class COVID19Dataset(Dataset):def __init__(self, img_dir, label_file, transform=None):self.img_dir = img_dirself.transform = transformself.img_labels = []with open(label_file, 'r') as f:lines = f.readlines()for line in lines:self.img_labels.append(line.strip().split())def __len__(self):return len(self.img_labels)def __getitem__(self, idx):img_path, label = self.img_labels[idx]img_path = os.path.join(self.img_dir, img_path)image = Image.open(img_path).convert('RGB')label = int(label)if self.transform:image = self.transform(image)return image, label# 图像预处理
transform = transforms.Compose([transforms.Resize((8, 8)),transforms.ToTensor()
])# 创建数据集和数据加载器
train_dataset = COVID19Dataset(img_dir='imgs', label_file='labels/train.txt', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=2, shuffle=True)valid_dataset = COVID19Dataset(img_dir='imgs', label_file='labels/valid.txt', transform=transform)
valid_loader = DataLoader(valid_dataset, batch_size=2, shuffle=False)# 定义简单卷积神经网络
class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()self.conv1 = nn.Conv2d(3, 1, kernel_size=3)  # 输入通道为3(RGB),输出通道为1,卷积核大小为3x3self.fc1 = nn.Linear(1 * 6 * 6, 2)  # 全连接层,输入大小为6*6*1,输出大小为2(2类)def forward(self, x):x = self.conv1(x)x = F.relu(x)x = x.view(-1, 1 * 6 * 6)  # 展平操作x = self.fc1(x)return xmodel = SimpleCNN()# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练函数
def train(model, train_loader, criterion, optimizer, epoch):model.train()running_loss = 0.0for batch_idx, (data, target) in enumerate(train_loader):optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()running_loss += loss.item()if batch_idx % 10 == 9:print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)}] Loss: {running_loss / 10:.6f}')running_loss = 0.0# 验证函数
def validate(model, valid_loader, criterion):model.eval()validation_loss = 0.0correct = 0with torch.no_grad():for data, target in valid_loader:output = model(data)validation_loss += criterion(output, target).item()pred = output.argmax(dim=1, keepdim=True)correct += pred.eq(target.view_as(pred)).sum().item()validation_loss /= len(valid_loader.dataset)print(f'\nValidation set: Average loss: {validation_loss:.4f}, Accuracy: {correct}/{len(valid_loader.dataset)} ({100. * correct / len(valid_loader.dataset):.0f}%)\n')# 训练和验证
for epoch in range(1, 11):train(model, train_loader, criterion, optimizer, epoch)validate(model, valid_loader, criterion)

效果展示:

由于数据量少,随机性非常大,大家多运行几次,观察结果。不过本案例结果完全不重要!)可以观看Average loss变化,Accuracy由于训练数据过少几乎不会变化
在这里插入图片描述

知识点总结

1. 数据

  • Q:要知道pytorch需要模型的格式
    A:需要编写代码完成数据的读取,转换成模型能够读取的格式。在 PyTorch 中,读取数据通常通过自定义 Dataset 类和内置的 DataLoader 来实现。这种方法既灵活又高效,适用于各种类型的数据集。
  • Q:自己如何编写Dataset?
    A:编写一个自定义的 Dataset 类,需要继承 torch.utils.data.Dataset 并实现三个方法:__init____len__ __getitem__

2. 模型

可参考:
从“卷积”、到“图像卷积操作”、再到“卷积神经网络”,“卷积”意义的3次改变_哔哩哔哩_bilibili

  • Q: 卷积层,全连接层的作用是什么?
    A: 卷积层提取特征,全连接层进行分类。
    1. 卷积层
    • 卷积层的作用是提取输入图像的特征。
    • 使用 3x3 的卷积核进行卷积操作,可以捕捉到局部的空间特征。
    • 卷积操作后的输出会产生一个新的特征图,这个特征图是卷积层提取到的特征表示。
    1. 全连接层
    • 全连接层的作用是将卷积层提取到的特征进行进一步的处理,最终输出分类结果。
    • 在这个例子中,全连接层有两个神经元,分别输出两个分类的概率。
    • 全连接层的输入被限制在 8x8,这意味着输入的特征图经过扁平化(flatten)后被映射到一个 8x8 的向量。

3. 优化

  • Q:根据什么规则对模型的参数进行更新学习呢?
    A:常用的方法:交叉熵损失函数(CrossEntropyLoss)、随机梯度下降法(SGD)和按固定步长下降学习率策略(StepLR)

4. 迭代

  • Q:怎么进行模型迭代?
    A: 有了模型参数更新的必备组件,接下来需要一遍又一遍地给模型喂数据,监控模型训练状态,这时候就需要for循环,不断地从dataloader里取出数据进行前向传播,反向传播,参数更新,观察loss、acc,周而复始。

总结

详细内容https://github.com/TingsongYu/PyTorch-Tutorial-2nd可查看,这是一篇读书笔记,与代码实现的分享。后续的笔记会以Q-A解决一些问题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/332764.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python爬虫实战:利用代理IP获取电商数据

文章目录 1.电商数据介绍2.爬取目标3.代理IP推荐4.准备工作4.1 模块安装4.2 代理IP获取 5.爬虫代码实战5.1分析网页5.1.1 获取cookie5.1.2 关键词分析5.1.3 翻页分析5.1.4 数据获取分析 5.2 发送请求5.3 提取数据5.4 保存数据5.5 完整源码5.6 数据分析六、总结 1.电商数据介绍 …

回收站清空的文件怎么恢复?8个方法公开(2024更新版)

“我太粗心了,刚想恢复部分回收站中误删的重要文件,一不小心把回收站清空了,现在还有什么方法可以恢复它们吗?” 在数字时代,电脑已经成为我们日常生活和工作中不可或缺的工具。然而,随着我们对电脑的依赖加…

linux经典定时任务

在使用时记得替换为自己的脚本路径。请在相应的脚本第一行加上#!/bin/bash,否则脚本在定时任务中无法执行。 1、在每天凌晨2点执行 0 2 * * * /bin/sh bashup.sh 2、每天执行两次 下面的示例命令将在每天上午5点和下午5点执行。您可以通过逗号分隔指定多个时间戳…

LeetCode:279.完全平方数

class Solution:def numSquares(self, n: int) -> int:dp[i for i in range(n1)]for i in range(2,n1):for j in range(1,int(i**(0.5))1):dp[i]min(dp[i],dp[i-j*j]1)return dp[-1]代码解释 初始化 DP 数组: dp [i for i in range(n1)] 这里,dp[i]…

【云原生】Kubernetes-----POD资源限制与探针机制

目录 引言 一、资源限制 (一)基本定义 (二)资源单位 1.CPU资源 2.内存资源 (三)请求与限制 (四)定义方式 1.编写yaml文件 2.查看资源情况 (五)资源…

构建智能化商场存包柜平台的数据结构设计

随着城市生活节奏的加快,人们对于便利的需求也越来越迫切。在城市中,商场存包柜平台成为了解决人们日常出行中行李存放问题的重要设施。为了更好地管理和运营这些存包柜,智能化商场存包柜平台的数据结构设计显得尤为关键。 一、需求分析与功能…

迷你手持小风扇哪个牌子质量好又实惠?这五款不踩雷推荐!

每年夏天,迷你手持小风扇作为消暑神器都会成为市场上的热销产品。然而,由于选购经验有限,许多消费者在面对众多品牌和型号时,往往难以判断哪个牌子的迷你小风扇既质量好又价格实惠。在追求性价比的同时,我们也不应忽视…

比例溢流阀的放大器找BEUEC

液压比例放大器的使用范围广泛,包括工业生产线、船舶液压系统等多个领域。BEUEC比例放大器是一种重要的液压系统组件,其作用是将微弱的液压信号放大,以实现对液压系统的精确控制。这种设备在多个行业中都有广泛的应用,特别是在需要…

Jenkins安装 :Aws EC2下Docker镜像安装

1 安装docker # 安装docker $ sudo yum install -y docker# 启动docker daemon $ sudo systemctl start docker# 用户加入docker组 $ sudo usermod -aG docker username 2 docker安装jenkins $ docker pull jenkins/jenkins:lts# 安装成功 $ docker images REPOSITORY …

[Algorihm][简单多状态DP问题][买卖股票的最佳时机含冷冻期][买卖股票的最佳时机含手续费]详细讲解

目录 1.买卖股票的最佳时机含冷冻期1.题目链接买卖股票的最佳时机含冷冻期2.算法原理详解3.代码实现 2.买卖股票的最佳时机含手续费1.题目链接2.算法原理详解3.代码实现 1.买卖股票的最佳时机含冷冻期 1.题目链接 买卖股票的最佳时机含冷冻期 2.算法原理详解 思路&#xff…

2024年上半年软件设计师试题及答案(回忆版)

目录 基础知识选择题案例题1.缺陷识别的数据流图2.球队、球员、比赛记录的数据库题3.用户、老师、学生、课程用例图4.算法题5.程序设计题 基础知识选择题 树的节点,度为4的有4个,度为3的有8个,度为2个有6个,度为1的有10个&#x…

深入解析内置模块OS:让你的Python代码更懂操作系统

新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一、OS模块简介与基础应用 二、文件与目录操作详解 三、OS模块的高级应用:双色…

Kubectl 的使用——k8s陈述式资源管理

一、kebuctl简介: kubectl 是官方的CLI命令行工具,用于与 apiserver 进行通信,将用户在命令行输入的命令,组织并转化为 apiserver 能识别的信息,进而实现管理 k8s 各种资源的一种有效途径。 对资源的增、删、查操作比较方便&…

基础IO用户缓冲区 、inode、硬软链接【Linux】

文章目录 用户缓冲区磁盘磁盘分区EXT2文件系统的存储方案 inode软链接硬链接 用户缓冲区 代码一&#xff1a; 1 #include<stdio.h>2 #include<unistd.h>3 #include<string.h> 4 int main()5 {6 const char * fstr &…

孜然多程序授权系统V2.0开源

源码介绍 孜然一款多程序授权系统&#xff0c;支持自定义权限价格/新增程序配置等支持自动生成授权代码在线签到在线充值多支付接口IP/域名云黑文章系统&#xff08;富文本编辑器&#xff09;卡密功能一键云黑&#xff08;挂个大马/一键黑页/一键删库/一键删源码&#xff09; …

ROS2入门21讲__第07讲__节点:机器人的工作细胞

目录 前言 通信模型 案例一&#xff1a;Hello World节点&#xff08;面向过程&#xff09; 运行效果 代码解析 创建节点流程 案例二&#xff1a;Hello World节点&#xff08;面向对象&#xff09; 运行效果 代码解析 创建节点流程 案例三&#xff1a;物体识别节点 …

民国漫画杂志《时代漫画》第24期.PDF

时代漫画24.PDF: https://url03.ctfile.com/f/1779803-1248635000-177187?p9586 (访问密码: 9586) 《时代漫画》的杂志在1934年诞生了&#xff0c;截止1937年6月战争来临被迫停刊共发行了39期。 ps: 资源来源网络!

GMSL2硬件设计V1.1

一、说明 GMSL(Gigabit Multimedia Serial Links),中文名称为千兆多媒体串行链路,是Maxim公司(现属于ADI)推出的一种高速串行接口,通过同轴电缆或屏蔽双绞线(STP)传输高速串行数据,用于汽车摄像头和显示器应用。GMSL2就是指ADI专有的第二代千兆多媒体串行链路技术,传输…

C++的哈希 哈希表 哈希桶

目录 Unordered系列关联式容器 什么是哈希 哈希表 闭散列 载荷因子α 扩容 查找 删除 字符串哈希算法 最终代码 开散列 插入 查找 删除 最终代码 完整代码 Unordered系列关联式容器 C98中&#xff0c;STL提供了底层为红黑树结构的一系列关联式容器&#xff0…

【数据结构】排序算法大全(快速、堆、归并、插入、折半、希尔、冒泡、计数、基数)各算法比较、解析+完整代码

文章目录 八、排序1.插入排序1.1 直接插入排序1.2 折半插入排序1.3 希尔排序 2.交换排序2.1 冒泡排序2.2 快速排序 3.选择排序3.1 简单选择排序3.2 堆3.2.1 堆排序3.2.2 堆插入删除*完善代码 堆 4.归并、基数、计数排序4.1 归并排序4.2 基数排序4.3 计数排序 5.内部排序算法的比…