基于Pytorch框架的深度学习EfficientNetV2神经网络中草药识别分类系统源码

 第一步:准备数据

5种中草药数据:self.class_indict = ["百合", "党参", "山魈", "枸杞", "槐花", "金银花"]

,总共有900张图片,每个文件夹单独放一种数据

第二步:搭建模型

本文选择一个EfficientNetV2网络,其原理介绍如下:

        该网络主要使用训练感知神经结构搜索缩放的组合;在EfficientNetV1的基础上,引入了Fused-MBConv到搜索空间中;引入渐进式学习策略自适应正则强度调整机制使得训练更快;进一步关注模型的推理速度训练速度

与EfficientV1相比,主要有以下不同:

  1. V2中除了使用MBConv模块外,还使用了Fused-MBConv模块
  2. V2中会使用较小的expansion ratio,在V1中基本都是6。这样的好处是能够减少内存访问开销
  3. V2中更偏向使用更小的kernel_size(3 x 3),在V1中很多5 x 5。优于3 x 3的感受野是比5 x 5小的,所以需要堆叠更多的层结构以增加感受野
  4. 移除了V1中最优一个步距为1的stage

第三步:训练代码

1)损失函数为:交叉熵损失函数

2)训练代码:

import os
import math
import argparseimport torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
import torch.optim.lr_scheduler as lr_schedulerfrom model import efficientnetv2_s as create_model
from my_dataset import MyDataSet
from utils import read_split_data, train_one_epoch, evaluatedef main(args):device = torch.device(args.device if torch.cuda.is_available() else "cpu")print(args)print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')tb_writer = SummaryWriter()if os.path.exists("./weights") is False:os.makedirs("./weights")train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)img_size = {"s": [300, 384],  # train_size, val_size"m": [384, 480],"l": [384, 480]}num_model = "s"data_transform = {"train": transforms.Compose([transforms.RandomResizedCrop(img_size[num_model][0]),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),"val": transforms.Compose([transforms.Resize(img_size[num_model][1]),transforms.CenterCrop(img_size[num_model][1]),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])}# 实例化训练数据集train_dataset = MyDataSet(images_path=train_images_path,images_class=train_images_label,transform=data_transform["train"])# 实例化验证数据集val_dataset = MyDataSet(images_path=val_images_path,images_class=val_images_label,transform=data_transform["val"])batch_size = args.batch_sizenw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workersprint('Using {} dataloader workers every process'.format(nw))train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,pin_memory=True,num_workers=nw,collate_fn=train_dataset.collate_fn)val_loader = torch.utils.data.DataLoader(val_dataset,batch_size=batch_size,shuffle=False,pin_memory=True,num_workers=nw,collate_fn=val_dataset.collate_fn)# 如果存在预训练权重则载入model = create_model(num_classes=args.num_classes).to(device)if args.weights != "":if os.path.exists(args.weights):weights_dict = torch.load(args.weights, map_location=device)load_weights_dict = {k: v for k, v in weights_dict.items()if model.state_dict()[k].numel() == v.numel()}print(model.load_state_dict(load_weights_dict, strict=False))else:raise FileNotFoundError("not found weights file: {}".format(args.weights))# 是否冻结权重if args.freeze_layers:for name, para in model.named_parameters():# 除head外,其他权重全部冻结if "head" not in name:para.requires_grad_(False)else:print("training {}".format(name))pg = [p for p in model.parameters() if p.requires_grad]optimizer = optim.SGD(pg, lr=args.lr, momentum=0.9, weight_decay=1E-4)# Scheduler https://arxiv.org/pdf/1812.01187.pdflf = lambda x: ((1 + math.cos(x * math.pi / args.epochs)) / 2) * (1 - args.lrf) + args.lrf  # cosinescheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)for epoch in range(args.epochs):# traintrain_loss, train_acc = train_one_epoch(model=model,optimizer=optimizer,data_loader=train_loader,device=device,epoch=epoch)scheduler.step()# validateval_loss, val_acc = evaluate(model=model,data_loader=val_loader,device=device,epoch=epoch)tags = ["train_loss", "train_acc", "val_loss", "val_acc", "learning_rate"]tb_writer.add_scalar(tags[0], train_loss, epoch)tb_writer.add_scalar(tags[1], train_acc, epoch)tb_writer.add_scalar(tags[2], val_loss, epoch)tb_writer.add_scalar(tags[3], val_acc, epoch)tb_writer.add_scalar(tags[4], optimizer.param_groups[0]["lr"], epoch)torch.save(model.state_dict(), "./weights/model-{}.pth".format(epoch))if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--num_classes', type=int, default=5)parser.add_argument('--epochs', type=int, default=100)parser.add_argument('--batch-size', type=int, default=4)parser.add_argument('--lr', type=float, default=0.01)parser.add_argument('--lrf', type=float, default=0.01)# 数据集所在根目录# https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgzparser.add_argument('--data-path', type=str,default=r"G:\demo\data\ChineseMedicine")# download model weights# 链接: https://pan.baidu.com/s/1uZX36rvrfEss-JGj4yfzbQ  密码: 5gu1parser.add_argument('--weights', type=str, default='./pre_efficientnetv2-s.pth',help='initial weights path')parser.add_argument('--freeze-layers', type=bool, default=True)parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')opt = parser.parse_args()main(opt)

第四步:统计正确率

第五步:搭建GUI界面

第六步:整个工程的内容

有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码

代码的下载路径(新窗口打开链接):基于Pytorch框架的深度学习EfficientNetV2神经网络中草药识别分类系统源码

有问题可以私信或者留言,有问必答

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/336744.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

String类详解

前言:String类是表示字符串的类,String类的内部也提供了非常多的方法来供程序员使用。 String类还有一大特性,就是不可变性。只要使用string创建了字符串,就不可以修改。为string类提供了一层安全性。(对于" &qu…

macOS上编译android的ffmpeg及ffmpeg.c

1 前言 前段时间介绍过使用xcode和qt creator编译调试ffmepg.c,运行平台是在macOS上,本文拟介绍下android平台如何用NDK编译链编译ffmepg库并使用。 macOS上使用qt creator编译调试ffmpeg.c macOS上将ffmpeg.c编译成Framework 大体思路: 其…

Android Context 详解

一、什么是Context? Context是一个抽象基类。在翻译为上下文,是提供一些程序的运行环境基础信息。 Context下有两个子类,ContextWrapper是上下文功能的封装类(起到方法传递的作用,主要实现还是ContextImpl&#xff0…

万字长文详解QUIC协议,为什么有了TCP我们还需要QUIC?

本文目录 1.前言2. HTTP缺点缺点一:建立连接的握手延迟大缺点二:多路复用的队首阻塞缺点三:TCP协议的更新滞后 3.TCP缺点3.QUIC优点一:避免队首阻塞的多路复用优点二:支持连接迁移优点三:可插拔的拥塞控制优…

【OceanBase诊断调优】—— obdiag 工具助力OceanBase数据库诊断调优(DBA 从入门到实践第八期)

1. 前言 昨天给大家分享了【DBA从入门到实践】第八期:OceanBase数据库诊断调优、认证体系和用户实践 中obdiag的部分,今天将其中的内容以博客的形式给大家展开一下,方便大家阅读。 2. 正文 在介绍敏捷诊断工具之前,先说说OceanBa…

VMware虚拟机安装Ubuntu-Server版教程(超详细)

目录 1. 下载2. 安装 VMware3. 安装 Ubuntu3.1 新建虚拟机3.2 安装操作系统 4. SSH方式连接操作系统4.1 好用的SSH工具下载:4.2 测试SSH连接 5. 开启root用户登录5.1 设置root用户密码5.2 传统方式切换root用户5.3 直接用root用户登录5.4 SSH启用root用户登录 6. 安…

FANUC机器人保养服务包,高效又可靠!

发那科机器人作为工业生产中的重要设备,其保养工作至关重要。定期FANUC机械手保养不仅可以延长机器人的使用寿命,还能提高生产效率和质量。 法那科机器人保养步骤: 基本的法兰克机器人保养是维护机器人的第一步,正确的保养步骤还…

Rainbond 携手 TOPIAM 打造企业级云原生身份管控新体验

TOPIAM 企业数字身份管控平台, 是一个开源的IDaas/IAM平台、用于管理账号、权限、身份认证、应用访问,帮助整合部署在本地或云端的内部办公系统、业务系统及三方 SaaS 系统的所有身份,实现一个账号打通所有应用的服务。 传统企业 IT 采用烟囱…

Redis用GEO实现附近的人功能

文章目录 ☃️概述☃️命令演示☃️API将数据库表中的数据导入到redis中去☃️实现附近功能 ☃️概述 GEO就是Geolocation的简写形式,代表地理坐标。Redis在3.2版本中加入了对GEO的支持,允许存储地理坐标信息,帮助我们根据经纬度来检索数据。…

木馒头头戴式蓝牙耳机

这里写目录标题 木馒头二代头戴式蓝牙耳机清除连接记忆 木馒头二代头戴式蓝牙耳机清除连接记忆 在配对模式下,同时按住播放和暂停按钮4秒,LED闪烁紫色3次,即为清除成功。

HTML动态响应2-Servlet+Ajax实现HTTP前后台交互方式

作者:私语茶馆 前言 其他涉及到的参考章节: HTML动态响应1—Ajax动态处理服务端响应-CSDN博客 Web应用JSON解析—FastJson1.2.83/Tomcat/IDEA解析案例-CSDN博客 HTML拆分与共享方式——多HTML组合技术-CSDN博客 1.场景: WEb项目经常需要前后端交互数据,并动态修改HTML页…

OSError: [Errno 117] Structure needs cleaning

一 问题描述 OSError: [Errno 117] Structure needs cleaning: /tmp/pymp-wafeatri 我重新使用SSH登录也会提示这个类似问题 二 解决方法 2.1 尝试删除报错的文件 (想直接看最终解决方法的可忽略此处) sudo rm -rf /tmp/pymp-wafeatri 此种方法只能保证…

【linux-imx6ull-设备树点灯】

目录 1. 设备树简介1.1 编译-引用1.2 设备树文件结构1.3 设备树节点介绍1.3.1 特殊节点chosen 1.4 节点内容追加 2. 设备树常用OF操作函数2.1 节点寻找类2.2 属性提取类2.3 其它常用类 4. 设备树下LED实验4.1 实验简介4.2 添加LED设备节点4.3 获取设备节点并提取属性4.3.1 获取…

内网渗透-隧道搭建ssp隧道代理工具

内网渗透-隧道搭建&ssp隧道代理工具 目录 内网渗透-隧道搭建&ssp隧道代理工具spp隧道代理工具spp工作原理图cs上线主机spp代理通信服务端配置客户端配置CS配置设置CS生成木马的监听器配置CS监听上线的监听器生成木马 spp隧道搭建服务端配置客户端配置CS配置 内网穿透&a…

【机器学习300问】100、怎么理解卷积神经网络CNN中的池化操作?

一、什么是池化? 卷积神经网络(CNN)中的池化(Pooling)操作是一种下采样技术,其目的是减少数据的空间维度(宽度和高度),同时保持最重要的特征并降低计算复杂度。池化操作不…

【吊打面试官系列】Java高并发篇 - 什么是乐观锁和悲观锁?

大家好,我是锋哥。今天分享关于 【什么是乐观锁和悲观锁?】面试题,希望对大家有帮助; 什么是乐观锁和悲观锁? 1、乐观锁: 就像它的名字一样,对于并发间操作产生的线程安全问题持乐观状态, 乐观锁认为竞争…

手拉手springboot整合kafka发送消息

环境介绍技术栈springbootmybatis-plusmysqlrocketmq软件版本mysql8IDEAIntelliJ IDEA 2022.2.1JDK17Spring Boot3.1.7kafka2.13-3.7.0 创建topic时,若不指定topic的分区(Partition主题分区数)数量使,则默认为1个分区(partition) springboot加入依赖kafk…

【深度学习基础】使用Pytorch搭建DNN深度神经网络与手写数字识别

目录 写在开头 一、DNN的搭建 问题描述与数据集 神经网络搭建 模型训练 模型评估 模型复用 二、手写数字识别 任务描述 数据集 神经网络搭建 模型训练 模型评估 写在最后 写在开头 本文将介绍如何使用PyTorch框架搭建深度神经网络模型。实现模型的搭建、模…

Ps系统教程03

选区工具的组合使用 先用魔棒将大致区域点击圈主 会发现一些零散的小区域 使用套索工具进行区域的加减(按住shift/alt键进行相关区域加减) 可以放大查看 基本处理完细节之后 如果把不用的填充背景直接按delete删除,那么原版图案就会…

【贪心算法题目练习】

1. 分发饼干 这道题目和我们之前讲到的田忌赛马的问题很相似,只不过这这里不需要劣等马去抵消掉优等马,直接上贪心策略: 先将两个数组排序。针对胃口较小的孩子,从小到大挑选饼干: i. 如果当前饼干能满足,直接喂(最小…