Matlab|基于粒子群算法优化Kmeans聚类的居民用电行为分析

 

目录

 

主要内容   

  部分代码   

  结果一览   

下载链接


主要内容   

在我们研究电力系统优化调度模型的过程中,由于每天负荷和分布式电源出力随机性和不确定性,可能会优化出很多的结果,但是经济调度模型试图做到通用策略,同样的策略能够适用于不同的负荷和分布式电源特征,为了做到这一点,就出现随机优化、鲁棒优化等等方法,当然我们也可以像这个程序一样,对负荷进行聚类分析,对归纳得到的共性负荷特征再进行优化调度分析,模型的说服力会大大增强。

常见的聚类算法包括kmeans聚类、层次聚类、DBSCAN聚类和谱聚类等,本模型采用的是kmean聚类,传统kmeans算法流程如下:

  1. 初始化:
  • 选择聚类的数量K。
  • 随机选择K个数据点作为初始聚类中心。
  1. 分配数据点到最近的聚类中心:
  • 对于数据集中的每个点,计算它与K个聚类中心之间的距离。
  • 将每个点分配到距离最近的聚类中心,形成K个簇。
  1. 重新计算聚类中心:
  • 对于每个簇,计算簇内所有数据点的均值,这个均值就是新的聚类中心。
  1. 判断收敛:
  • 如果新的聚类中心与旧的聚类中心相同,或者达到预设的迭代次数,或者簇的成员不再发生变化,则算法收敛,结束流程。
  • 否则,返回步骤2继续迭代。

反复的迭代过程导致kmeans算法具有迭代时间长和性能不稳定等问题,为了解决该问题,通过粒子群算法和聚类算法的结合有效提升算法效能,具体流程步骤为:

  部分代码   

function Error=PredoKMeans(Index,X,Replicate)
%%  Kmeans聚类算法
%  Index为从X中随机抽取的中心样本序号
​
%  行数
N=size(X,1);
M=size(X,2);
%  聚类情况
Position=zeros(N,1);
H=length(Index);
%  选择样本的中心
Index=floor(Index);
Center=X(Index,:);
%  总重构误差
for i=1:ReplicateError=0;for j=1:Nif M==1Distance=(repmat(X(j,:),H,1)-Center).^2;elseif M>1Distance=sum((repmat(X(j,:),H,1)-Center).^2,2);end%  选择最小的距离[Dis,Index]=min(Distance);Position(j)=Index;Error=Error+Dis;end
%     %  更新聚类中心
%     for j=1:H
%         Center(j,:)=mean(X(Position==j,:));
%     end
end

  结果一览   

下载链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/337462.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HarmonyOS鸿蒙学习笔记(25)相对布局 RelativeContainer详细说明

RelativeContainer 简介 前言核心概念官方实例官方实例改造蓝色方块改造center 属性说明参考资料 前言 RelativeContainer是鸿蒙的相对布局组件,它的布局很灵活,可以很方便的控制各个子UI 组件的相对位置,其布局理念有点类似于android的约束…

如何看待时间序列与机器学习?

GPT-4o 时间序列与机器学习的关联在于,时间序列数据是一种重要的结构化数据形式,而机器学习则是一种强大的工具,用于从数据中提取有用的模式和信息。在很多实际应用中,时间序列与机器学习可以结合起来,发挥重要作用。…

基于 Apache Doris 的实时/离线一体化架构,赋能中国联通 5G 全连接工厂解决方案

作者:田向阳,联通西部创新研究院 大数据专家 共创:SelectDB 技术团队 导读: 数据是 5G 全连接工厂的核心要素,为支持全方位的数据收集、存储、分析等工作的高效进行,联通 5G 全连接工厂从典型的 Lambda 架…

利用ArcGIS Python批量拼接遥感影像(arcpy batch processing)

本篇文章将说明如何利用ArcGIS 10.1自带的Python IDLE进行遥感影像的批量拼接与裁剪。 1.运行环境:ArcGIS10.1 (安装传送门)、Python IDLE 2.数据来源:地理空间数据云 GDEMV2 30M分辨率数字高程数据 3.解决问题:制作山西省的DEM影像 如下…

CMake的使用

文章目录 一、CMake概述二、CMake的使用1.注释2.简单编译程序3.定义变量4.指定使用的C标准5.指定输出的路径6.搜索文件7.包含头文件 三、通过CMake 制作库文件1.制作动静态库2.指定动静态库生成的路径3.在程序中链接静态库4.在程序中链接动态库 四、日志五、变量操作1.追加2.字…

521源码网-免费网络教程-Cloudflare使用加速解析-优化大陆访问速度

Cloudfalre 加速解析是由 心有网络 向中国大陆用户提供的公共优化服务 接入服务节点: cf.13d7s.sit 接入使用方式类似于其它CDN的CNAME接入,可以为中国大陆用户访问Cloudflare网络节点大幅度加速,累计节点130 如何接入使用 Cloudflare 加速解析&#…

python-模块-网络编程-多任务

一、模块 1-1 Python 自带模块 Json模块 处理json数据 {"key":"value"} json不是字典 本质是一个有引号的字符串数据 json注意点 {} 中的数据是字符串引号必须是双引号 使用json模块可以实现将json转为字典,使用字典的方法操作数据 。 或者将…

c基础 - 输入输出

目录 一.scanf() 和 printf() 函数 1.printf 2.scanf 二 . getchar() & putchar() 函数 1.int getchar(void) 2.int putchar(int c) 三. gets() & puts() 函数 一.scanf() 和 printf() 函数 #include <stdio.h> 需要引入头文件,stdio.h 1.printf print…

23种软件设计模式——工厂模式

工厂模式 工厂模式&#xff08;Factory Pattern&#xff09;是 Java 中最常用的设计模式之一&#xff0c;它提供了一种创建对象的方式&#xff0c;使得创建对象的过程与使用对象的过程分离。 工厂模式提供了一种创建对象的方式&#xff0c;而无需指定要创建的具体类。 通过使…

高级Web Lab2

高级Web Lab2 12 1 按照“Lab 2 基础学习文档”文档完成实验步骤 实验截图&#xff1a; 2 添加了Web3D场景选择按钮&#xff0c;可以选择目标课程或者学习房间。

[数据集][目标检测][数据集][目标检测]智能手机检测数据集VOC格式5447张

数据集格式&#xff1a;Pascal VOC格式(不包含分割的txt文件&#xff0c;仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数)&#xff1a;5447 标注数量(xml文件个数)&#xff1a;5447 标注类别数&#xff1a;1 标注类别名称:["phone"] 每个类别标注的框数&#xff…

详解生成式人工智能的开发过程

回到机器学习的“古老”时代&#xff0c;在您可以使用大型语言模型&#xff08;LLM&#xff09;作为调优模型的基础之前&#xff0c;您基本上必须在所有数据上训练每个可能的机器学习模型&#xff0c;以找到最佳&#xff08;或最不糟糕&#xff09;的拟合。 开发生成式人工智能…

爬虫在金融领域的应用:股票数据收集

介绍 在金融领域&#xff0c;准确及时的数据收集对于市场分析和投资决策至关重要。股票价格作为金融市场的重要指标之一&#xff0c;通过网络爬虫技术可以高效地从多个网站获取实时股票价格信息。本文将介绍网络爬虫在金融领域中的应用&#xff0c;重点讨论如何利用Scrapy框架…

【JVM精通之路】垃圾回收-三色标记算法

首先预期你已经基本了解垃圾回收的相关知识&#xff0c;包括新生代垃圾回收器&#xff0c;老年代垃圾回收器&#xff0c;以及他们的算法&#xff0c;可达性分析等等。 先想象一个场景 最开始黑色节点是GC-Roots的根节点&#xff0c;这些对象有这样的特点因此被选为垃圾回收的根…

Python3位运算符

前言 本文介绍的是位运算符&#xff0c;位运算可以理解成对二进制数字上的每一个位进行操作的运算&#xff0c;位运算分为 布尔位运算符 和 移位位运算符。 文章目录 前言一、位运算概览1、布尔位运算符1&#xff09;按位与运算符 ( & )2&#xff09;按位或运算符 ( | )3…

【设计模式深度剖析】【5】【结构型】【桥接模式】| 以电视和遥控器为例加深理解

&#x1f448;️上一篇:组合模式 | 下一篇:外观模式&#x1f449;️ 设计模式-专栏&#x1f448;️ 目 录 桥接模式(Bridge Pattern)定义英文原话是&#xff1a;直译理解 4个角色UML类图代码示例 应用优点缺点使用场景 示例解析&#xff1a;电视和遥控器UML类图 桥接模式…

5G NR TAE TEST

环境配置&#xff1a; 测试TAE时&#xff0c;需要比对不同的Antenna Port之间的差异来测试 配置DL 2 layer MU的case layer1&#xff1a;通过设置weight&#xff0c;只有一个物理天线上有weight&#xff0c;其他天线上的weight为0&#xff0c;该天线的DMRS DMRS Port设置为1…

lynis安全漏洞扫描工具

Lynis是一款Unix系统的安全审计以及加固工具&#xff0c;能够进行深层次的安全扫描&#xff0c;其目的是检测潜在的时间并对未来的系统加固提供建议。这款软件会扫描一般系统信息&#xff0c;脆弱软件包以及潜在的错误配置。 安装 方式1 git下载使用git clone https://github…

谢宁DOE培训的课程大纲分享

谢宁DOE培训旨在深入讲解谢宁问题解决方法在质量管理中的重要作用&#xff0c;学会如何利用谢宁问题解决方法工具&#xff0c;在不中断生产过程的前提下&#xff0c;找出生产中碰到的复杂而顽固的问题的原因&#xff0c;从而彻底地解决问题。 【课程内容】 第一部分&#xff1…

某咨询公司的大数据解决方案介绍(32页PPT)

方案介绍&#xff1a; 本咨询公司的大数据平台解决方案以企业实际需求为出发点&#xff0c;结合先进的大数据技术和行业经验&#xff0c;为企业提供一站式的大数据服务。通过实时数据收集与处理、深度数据分析与挖掘、可视化数据展示以及灵活的数据应用与扩展&#xff0c;帮助…