Whisper-AT:抗噪语音识别模型(Whisper)实现通用音频事件标记(Audio Tagger)

       本文介绍一个统一音频标记(Audio Tagger)和语音识别(ASR)的模型:Whisper-AT,通过冻结Whisper的主干,并在其之上训练一个轻量级的音频标记模型。Whisper-AT在额外计算成本不到1%的情况下,可以在单次前向传递中识别音频事件以及口语文本。这个模型的提出是建立一个有趣的发现基础上:Whisper对真实世界背景声音非常鲁棒,其音频表示实际上并不是噪声不变的,而是与非语音声音高度相关,这表明Whisper是在噪声类型的基础上识别语音的

1.概述:

       Whisper-AT 是建立在 Whisper 自动语音识别(ASR)模型基础上的一个模型。Whisper 模型使用了一个包含 68 万小时标注语音的大规模语料库进行训练,这些语料是在各种不同条件下录制的。Whisper 模型以其在现实背景噪音(如音乐)下的鲁棒性著称。尽管如此,其音频表示并非噪音不变,而是与非语音声音高度相关。这意味着 Whisper 在识别语音时会依据背景噪音类型进行调整

       在上述发现的基础上,有一个令人兴奋的应用方式:我们能够基于Whisper构建一个统一的模型,用于自动语音识别(ASR)和音频标记,以同时识别口语文本和背景声音(例如音乐、喇叭等),这在视频转录、语音助手和助听器系统等应用中非常理想。Whisper是这样一个统一模型的理想基础,因为1)它对背景声音具有鲁棒性,2)它的中间表示编码了丰富的一般音频事件信息,这为音频标记提供了坚实的基础。尽管如此,原始的Whisper模型不输出声音标签,所以我们需要在Whisper的中间表示之上训练一个模型,以使其能够预测声音类别。请注意,我们特意不修改原始Whisper模型的权重,而是在其上添加新的音频标记层,以便Whisper的自动语音识别能力不受影响,并且可以在单个前向传递中生成文本和音频标签。我们称这个统一的ASR和音频标记模型为Whisper-AT。

主要发现:

  1. 噪音变化的表示:

    • Whisper 的音频表示编码了丰富的非语音背景声音信息,这与通常追求噪音不变表示的 ASR 模型目标不同。
    • 这一特性使得 Whisper 能够在各种噪音条件下通过识别和适应噪音来保持其鲁棒性。
  2. ASR 和音频标签的统一模型:

    • 通过冻结 Whisper 模型的骨干网络,并在其上训练一个轻量级的音频标签模型,Whisper-AT 可以在一次前向传递中同时识别音频事件和语音文本,额外的计算成本不足 1%。
    • Whisper-AT 在音频事件检测方面表现出色,同时保持了 Whisper 的 ASR 功能。

技术细节:

  1. Whisper ASR 模型:

    • Whisper 使用基于 Transformer 的编码器-解码器架构。
    • 其训练集包括从互联网上收集的 68 万小时音频-文本对,涵盖了广泛的环境、录音设置、说话人和语言。
  2. 抗噪机制:

    • Whisper 的鲁棒性并非通过噪音不变性实现,而是通过在其表示中编码噪音类型。
    • 这一机制使得 Whisper 能够根据背景噪音类型来转录文本,从而在嘈杂条件下表现优越。
  3. 构建 Whisper-AT:

    • Whisper-AT 是通过在 Whisper 模型上添加新的音频标签层而构建的,未修改其原始权重。

    • 探索了不同的音频标签层集成方法,包括:
      • Last-MLP:对 Whisper 的最后一层表示进行时间均值池化,然后应用线性层。
      • WA-MLP:对所有层的表示进行加权平均,然后应用线性层。
      • WA-Tr:用时间 Transformer 层替换线性层。
      • TL-Tr:使用时间和层次 Transformer 处理所有层的表示。
  4. 效率考量:

    • 为保持计算效率,采用了各种策略,例如减少表示的序列长度,并在应用音频标签 Transformer 之前可选地降低维度。

性能:

  • Whisper-AT 在 AudioSet 上达到了 41.5 的 mAP,略低于独立的音频标签模型,但处理速度显著更快,超过 40 倍。

意义:

  • 能够同时执行 ASR 和音频标签任务,使得 Whisper-AT 非常适合于视频转录、语音助手和助听器系统等应用场景,在这些场景中需要同时进行语音文本和声学场景分析。

2.代码:

       欲了解详细的实现和实验结果,请访问 GitHub: github.com/yuangongnd/whisper-at.

       下面是对 Whisper-AT 架构的简要解释,通过逐步解析其主要组件和功能,帮助理解其工作原理。

安装和准备

首先,确保你已经安装了 Whisper 和相关的依赖项:

pip install git+https://github.com/openai/whisper.git
pip install torch torchaudio
pip install transformers datasets

代码结构

简要 Whisper-AT 的代码结构如下所示:

Whisper-AT/
│
├── whisper_at.py
├── train.py
├── dataset.py
├── utils.py
└── README.md

whisper_at.py - Whisper-AT 模型

import torch
import torch.nn as nn
import whisperclass WhisperAT(nn.Module):def __init__(self, model_name="base"):super(WhisperAT, self).__init__()self.whisper = whisper.load_model(model_name)self.audio_tagging_head = nn.Linear(self.whisper.dims, 527)  # 527 是 AudioSet 的标签数def forward(self, audio):# 获取 Whisper 的中间表示with torch.no_grad():features = self.whisper.encode(audio)# 通过音频标签头audio_tagging_output = self.audio_tagging_head(features.mean(dim=1))return audio_tagging_output

train.py - 训练脚本

import torch
from torch.utils.data import DataLoader
from dataset import AudioSetDataset
from whisper_at import WhisperAT
import torch.optim as optim
import torch.nn.functional as Fdef train():# 加载数据集train_dataset = AudioSetDataset("path/to/training/data")train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)# 初始化模型model = WhisperAT()model.train()# 定义优化器optimizer = optim.Adam(model.parameters(), lr=1e-4)for epoch in range(10):  # 假设训练10个epochfor audio, labels in train_loader:optimizer.zero_grad()# 前向传播outputs = model(audio)# 计算损失loss = F.binary_cross_entropy_with_logits(outputs, labels)# 反向传播和优化loss.backward()optimizer.step()print(f"Epoch {epoch}, Loss: {loss.item()}")if __name__ == "__main__":train()

dataset.py - 数据集处理

import torch
from torch.utils.data import Dataset
import torchaudioclass AudioSetDataset(Dataset):def __init__(self, data_path):self.data_path = data_pathself.audio_files = [...]  # 这里假设你有一个包含所有音频文件路径的列表self.labels = [...]  # 这里假设你有一个包含所有对应标签的列表def __len__(self):return len(self.audio_files)def __getitem__(self, idx):# 加载音频audio, sample_rate = torchaudio.load(self.audio_files[idx])# 获取对应标签labels = torch.tensor(self.labels[idx])return audio, labels

utils.py - 辅助功能

import torchdef save_model(model, path):torch.save(model.state_dict(), path)def load_model(model, path):model.load_state_dict(torch.load(path))model.eval()

详细解释

  1. Whisper-AT 模型 (whisper_at.py):

    • WhisperAT 类继承自 nn.Module,初始化时加载 Whisper 模型,并在其上添加一个线性层用于音频标签任务。
    • forward 方法首先调用 Whisper 模型的 encode 方法获取音频特征,然后将这些特征传递给音频标签头(线性层)以生成标签输出。
  2. 训练脚本 (train.py):

    • train 函数中,数据集被加载并传递给 DataLoader。
    • 模型实例化并设置为训练模式。
    • 定义了 Adam 优化器和二进制交叉熵损失函数。
    • 在训练循环中,音频输入通过模型生成输出,计算损失并执行反向传播和优化。
  3. 数据集处理 (dataset.py):

    • AudioSetDataset 类继承自 Dataset,实现了音频数据和标签的加载。
    • __getitem__ 方法加载音频文件并返回音频张量和对应标签。
  4. 辅助功能 (utils.py):

    • 包含保存和加载模型状态的函数,方便模型的持久化和恢复。

       通过以上代码结构和解释,可以帮助理解 Whisper-AT 的实现和训练流程。可以根据需要扩展这些代码来适应具体的应用场景和数据集。

附录:

A. 通用音频事件标记(Audio Tagger)

通用音频事件标记 (Audio Tagger) 是一种用于识别和分类音频信号中不同事件的技术。它在音频处理领域具有广泛的应用,包括环境声音识别、音乐信息检索、语音识别、和多媒体内容分析等。

核心概念

  1. 音频事件(Audio Event): 音频事件指的是音频信号中的特定声音,如鸟鸣、犬吠、警笛声、音乐片段或人声。这些事件可以是短暂的瞬时声音或持续一段时间的信号。

  2. 标签(Tagging): 标签是对音频信号中的事件进行分类或标注的过程。每个标签对应一个音频事件类别,目的是识别音频信号中包含哪些类型的声音。

技术实现

1. 特征提取

特征提取是音频事件标记的第一步,它将原始音频信号转换为适合分类的特征向量。常用的特征提取方法包括:

  • 梅尔频率倒谱系数(MFCC):捕捉音频信号的短时频谱特征。
  • 谱质心(Spectral Centroid):描述音频信号的亮度。
  • 零交叉率(Zero-Crossing Rate):音频信号通过零点的次数。
  • 色度特征(Chromagram):表示音频信号的音调内容。
2. 特征表示和建模

一旦提取了音频特征,需要将其输入到机器学习模型中进行训练和预测。常用的模型包括:

  • 传统机器学习模型:如高斯混合模型 (GMM)、支持向量机 (SVM) 和隐马尔可夫模型 (HMM)。
  • 深度学习模型:卷积神经网络 (CNN) 和递归神经网络 (RNN) 在音频事件标记中表现出色,尤其是能够处理复杂的时间和频率模式。
3. 标签分配和分类

在训练模型之后,对新的音频信号进行标签分配。模型根据输入的特征向量预测音频信号所属的事件类别。

应用实例

  • 环境声音识别:识别并分类自然环境中的声音,如鸟叫、雨声、车流声等。
  • 音乐信息检索:分析和分类音乐片段,识别音乐类型、乐器声或特定的音乐模式。
  • 语音识别:识别和分类语音中的特定事件,如关键词检测、语音活动检测等。

前沿研究

  1. 多任务学习: 多任务学习方法通过在多个相关任务上共享表示来提高模型性能。例如,PSLA(Pretraining, Sampling, Labeling, and Aggregation)方法在音频标签任务中取得了显著进展 。

  2. 自监督学习: 自监督学习方法通过利用大量未标记数据进行预训练,显著提高了模型在音频事件标记任务上的表现。

  3. 基于Transformer的模型: 例如,Audio Spectrogram Transformer (AST) 利用Transformer架构的优势,在多个音频分类任务上表现优异,超越了传统的卷积神经网络(CNN)方法 。

总结

通用音频事件标记在现代音频处理领域发挥着重要作用。通过结合特征提取、先进的机器学习模型和深度学习技术,音频事件标记能够实现高效、准确的音频信号分类和识别。在未来,随着多任务学习、自监督学习和更先进的深度学习模型的引入,音频事件标记技术将继续发展和完善。

B. Whisper模型

Whisper 是由 OpenAI 开发的一个先进的自动语音识别(ASR)模型。它采用了Transformer架构,特别擅长捕捉音频信号中的全局特征和时间动态。这使得 Whisper 能够在多语言和多任务的语音识别任务中表现优异。

Whisper 模型简介

1. 模型架构

Whisper模型的核心是Transformer架构,包括编码器(Encoder)和解码器(Decoder)。该架构利用多头自注意力机制(Multi-Head Self-Attention)和位置编码(Positional Encoding)来处理音频信号,捕捉其时间动态和全局特征。

  • 编码器(Encoder):负责接收和处理输入音频信号,将其转换为高维度的中间表示。编码器由多层自注意力和前馈神经网络组成。
  • 解码器(Decoder):利用编码器生成的中间表示,结合上下文信息,生成目标输出(如转录文本)。解码器结构类似于编码器,同样由多层自注意力和前馈神经网络组成。
2. 自注意力机制

自注意力机制允许模型在处理音频信号时,动态地关注不同部分的信息,从而捕捉长程依赖关系。这种机制特别适用于音频信号处理,因为语音信息通常分布在整个序列中,需要全局视角进行建模。

3. 位置编码

由于音频信号是连续的时间序列数据,位置编码在Whisper模型中起着关键作用。位置编码通过为每个时间步添加唯一的位置信息,使得模型能够识别音频信号中的顺序和时间动态。

Whisper 模型的特性和优势

  1. 多语言支持:Whisper 支持多种语言的语音识别任务,能够处理不同语言的音频信号。
  2. 高准确性:得益于Transformer架构和自注意力机制,Whisper在多任务语音识别任务中表现出色,准确率高。
  3. 长程依赖建模:通过自注意力机制,Whisper能够捕捉音频信号中的长程依赖关系,处理长时间的语音数据更加有效。
  4. 灵活性和扩展性:Whisper可以通过预训练和微调,适应不同的语音识别任务和数据集。

Whisper 模型的应用

Whisper 可应用于多种语音识别和处理任务,包括:

  • 实时语音转录:将实时语音输入转录为文本,用于字幕生成、会议记录等场景。
  • 多语言翻译:实时翻译不同语言的语音输入,促进跨语言交流。
  • 语音指令识别:用于智能设备和语音助手的语音指令识别,提高交互体验。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/338844.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第三届大湾区算力大会丨暴雨开启数字未来新篇

5月30-31日,韶关市迎来主题为“算启新篇智创未来”的第三届粤港澳大湾区(广东)算力产业大会暨第二届中国算力网大会,活动由广东省人民政府主办,广东省政数局、韶关市人民政府共同承办。暴雨信息作为算力产业发展的重要构建者受邀赴会&#xf…

vue-2

vue-cli的安装 vue-cli是一个脚手架工具,它集成了诸多前端技术,包括但不仅限于: webpack、 babel、eslint、http-proxy-middleware、typescript、css pre-prosessor、css module、… 这些工具,他们大部分都要依赖两个东西&…

用例篇03

正交表 因素:存在的条件 水平:因素的取值 最简单的正交表:L4(2) 应用 allpairs 来实现正交表。 步骤: 1.根据需求找出因素和水平 2.将因素和水平写入到excel表格中(表格不需要保存)(推荐用…

WP All Import插件

使用 WP All Imports 插件并将亚马逊产品集成到 WooCommerce 网站中。在您的网站上,他们可以添加到购物车...然后一旦他们按下结帐,他们就会被发送到亚马逊进行付款 WP All Import 是一个强大的WordPress插件,它允许用户从XML或CSV文件中导入…

区块链--Ubuntu上搭建以太坊私有链

1、搭建私链所需环境 操作系统:ubuntu16.04,开虚拟机的话要至少4G,否则会影响测试挖矿时的速度 软件: geth客户端 Mist和Ethereum Wallet:Releases ethereum/mist GitHub 2、安装geth客户端 sudo apt-get update …

day20

第一题 23. 合并 K 个升序链表 本题是已经知道有多个链表,需要我们将这些链表按照升序排列的规则组合到一起,同时这些链表都是升序排列的; 解法一: 利用优先级队列 步骤一:利用优先级队列床架一个小根堆; …

事务报错没有显示回滚导致DDL阻塞引发的问题

在业务开发过程中,显示的开启事务并且在事务处理过程中对不同的情况进行显示的COMMIT或ROLLBACK,这是一个完整数据库事务处理的闭环过程。 这种在应用开发逻辑层面去handle的事务执行的结果,既确保了事务操作的数据完整性,又遵循了…

Jenkins流水线pipeline--基于上一章的工作流程

1流水线部署 1.流水线文本名Jenkinsfile,将流水线放入gitlab远程仓库代码里面 2构建参数 2pipeline脚本 Jenkinsfile文件内容 pipeline {agent anyenvironment {key"value"}stages {stage("拉取git仓库代码") {steps {deleteDir()checkout scmGit(branc…

kafka-生产者发送消息消费者消费消息

文章目录 1、生产者发送消息&消费者消费消息1.1、获取 kafka-console-producer.sh 的帮助信息1.2、生产者发送消息到某个主题1.3、消费主题数据 1、生产者发送消息&消费者消费消息 1.1、获取 kafka-console-producer.sh 的帮助信息 [rootlocalhost ~]# kafka-console…

CISCN 2022 初赛 ez_usb

还是从第一个 URB向后看 发现 同时 存在 2.8.1 2.10.1 2.4.1 但是显然 2.4.1 是7个字节 不满足 usb流量要求 只考虑 2.8.1 和 2.10.1 tshark -r ez_usb.pcapng -T json -Y "usb.src \"2.8.1\"" -e usbhid.data > 281.json 正常取数据即可 import js…

Vue3 - Mac系统用文本编辑写html不显示效果的坑

平时在win系统下,可以直接对文本进行编辑,非常的舒服。 在mac系统中,也有类似的功能,就是文本编辑,没想到居然还有坑。 这是我mac系统中创建的html文件,想着没有几行代码,就没有开编辑器了&am…

crossover软件是干什么的 crossover软件安装使用教程 crossover软件如何使用

CrossOver 以其出色的跨平台兼容性,让用户在Mac设备上轻松运行各种Windows软件,无需复杂的设置或额外的配置,支持多种语言,满足不同国家和地区用户的需求。 CrossOver 软件是干嘛的 使用CrossOver 不必购买Windows 授权&#xf…

Java Spring Boot 从必应爬取图片

获取图片主要就是通过必应图片页面控制台的元素,确认图片和标题在哪个类中(浏览器 F12) 引入依赖 这里需要引入两个依赖 jsoup 和 hutool maven依赖网站地址:Maven Repository: Search/Browse/Explore (mvnrepository.com) 挑选…

基于java18多端展示+ idea hbuilder+ mysql家政预约上门服务系统,源码交付,支持二次开发

基于java18多端展示 idea hbuilder mysql家政预约上门服务系统,源码交付,支持二次开发 家政预约上门系统是一种通过互联网或移动应用平台,为用户提供在线预约、下单、支付和评价家政服务的系统。该系统整合了家政服务资源,使用户能…

c++学生管理系统

想要实现的功能 1,可以增加学生的信息,包括(姓名,学号,c成绩,高数成绩,英语成绩) 2,可以删除学生信息 3,修改学生信息 4,显示所有学生信息 5&#xff0c…

图形学初识--多边形剪裁算法

文章目录 前言正文为什么需要多边形剪裁算法?前置知识二维直线直线方程:距离本质:点和直线距离关系: 三维平面平面方程距离本质:点和直线距离关系: Suntherland hodgman算法基本介绍基本思想二维举例问题描…

uni-app解决表格uni-table样式问题

一、如何让表格文字只显示一行,超出部分用省略号表示 步骤 : 给table设置table-layout:fixed; 列宽由表格宽度和列宽度设定。(默认是由单元格内容设定)让表格元素继承父元素宽度固定table-layout: inherit;overflow: hidden;超过…

Docker安装启动Mysql

1、安装Docker(省略) 网上教程很多 2、下载Mysql5.7版本 docker pull mysql:5.7 3、查看镜像是够下载成功 docker images 4、启动镜像,生成容器 docker run --name mysql5.7 -p 13306:3306 -e MYSQL_ROOT_PASSWORD123456 -d mysql:5.7 5…

我成功创建了一个Electron应用程序

1.创建electron项目命令: yarn create quick-start/electron electron-memo 2选择:√ Select a framework: vue √ Add TypeScript? ... No √ Add Electron updater plugin? ... Yes √ Enable Electron download mirror proxy? ... Yes 3.命令&a…

services层和controller层

services层 我的理解,services层是编写逻辑代码语句最多的一个层,非常重要,在实际的项目中,负责调用Dao层中的mybatis,在我的项目中它调用的是这两个文件 举例代码如下 package com.example.sfdeliverysystem.servic…