C++结合OpenCV进行图像处理与分类

⭐️我叫忆_恒心,一名喜欢书写博客的在读研究生👨‍🎓。
如果觉得本文能帮到您,麻烦点个赞👍呗!

近期会不断在专栏里进行更新讲解博客~~~ 有什么问题的小伙伴 欢迎留言提问欧,喜欢的小伙伴给个三连支持一下呗。👍⭐️❤️
Qt5.9专栏定期更新Qt的一些项目Demo
项目与比赛专栏定期更新比赛的一些心得面试项目常被问到的知识点。

在这里插入图片描述

一、引言

在当今数字化时代,图像处理技术在各个领域得到了广泛应用。无论是自动驾驶、医学影像分析,还是安防监控、虚拟现实,图像处理都扮演着重要角色。OpenCV(Open Source Computer Vision Library)作为一个开源的计算机视觉库,提供了丰富的图像处理函数和工具,使得图像处理变得更加简单和高效。本文将介绍如何使用C++结合OpenCV进行基础的图像处理操作。
在这里插入图片描述

二、 安装OpenCV

Windows系统详细的环境安装,可以参考我之前写的这一篇文章。
VS2019中配置C++ OpenCV 4.5.4完整指南

在使用OpenCV之前,我们需要先在开发环境中安装OpenCV库。以下是Windows和Ubuntu系统中安装OpenCV的基本步骤:

1. Windows系统:

  1. 下载OpenCV安装包:OpenCV官网
  2. 解压安装包到指定目录。
  3. 配置环境变量,将OpenCV的bin目录添加到系统的PATH中。
  4. 在C++项目中添加OpenCV库的包含路径和库文件路径。

2. Ubuntu系统:

sudo apt update
sudo apt install libopencv-dev

三、 图像读取与显示

首先,我们来看一个简单的图像读取与显示的示例程序:

#include <opencv2/opencv.hpp>
#include <iostream>int main() {// 读取图像cv::Mat image = cv::imread("example.jpg");// 检查图像是否读取成功if(image.empty()) {std::cout << "无法打开图像文件" << std::endl;return -1;}// 显示图像cv::imshow("Display Image", image);cv::waitKey(0); // 等待按键按下return 0;
}

在这个示例中,我们使用cv::imread函数读取一张图像,并使用cv::imshow函数显示图像。cv::waitKey(0)函数用于等待用户按键,以便窗口不会立即关闭。

四、 图像预处理

图像预处理是图像处理中的重要步骤,包括图像的灰度化、二值化、平滑处理等。以下是一个简单的图像预处理示例:

#include <opencv2/opencv.hpp>
#include <iostream>int main() {cv::Mat image = cv::imread("example.jpg", cv::IMREAD_GRAYSCALE); // 读取灰度图像if(image.empty()) {std::cout << "无法打开图像文件" << std::endl;return -1;}cv::Mat blurredImage;cv::GaussianBlur(image, blurredImage, cv::Size(5, 5), 1.5); // 高斯模糊处理cv::imshow("Original Image", image);cv::imshow("Blurred Image", blurredImage);cv::waitKey(0);return 0;
}

在这个示例中,我们使用cv::imread函数以灰度模式读取图像,并使用cv::GaussianBlur函数对图像进行高斯模糊处理。

五、图像形状检测

OpenCV还提供了丰富的形状检测功能,例如边缘检测和轮廓检测。以下是一个简单的边缘检测示例:

#include <opencv2/opencv.hpp>
#include <iostream>int main() {cv::Mat image = cv::imread("example.jpg", cv::IMREAD_GRAYSCALE);if(image.empty()) {std::cout << "无法打开图像文件" << std::endl;return -1;}cv::Mat edges;cv::Canny(image, edges, 50, 150); // Canny边缘检测cv::imshow("Edges", edges);cv::waitKey(0);return 0;
}

在这个示例中,我们使用cv::Canny函数进行边缘检测,并显示结果图像。

六、图像分类

图像分类是计算机视觉中的重要任务,常用于自动驾驶、安防监控、医疗诊断等领域。通过对图像内容进行分类,我们可以实现对不同类别物体的识别和区分。

1.1 使用Bag of Words (BOW)算法进行图像分类

Bag of Words (BOW)算法是一种经典的图像分类方法,通过将图像表示为特征词袋进行分类。下面是使用OpenCV和C++实现BOW算法进行图像分类的示例代码。

1.2 环境准备

首先,确保已安装OpenCV库,并配置好C++开发环境。需要安装额外的库如opencv_contrib,以便使用BOW相关模块。

1.3 示例代码

以下是实现BOW算法进行图像分类的代码:

#include <opencv2/opencv.hpp>
#include <opencv2/xfeatures2d.hpp>
#include <opencv2/ml.hpp>
#include <iostream>
#include <vector>using namespace cv;
using namespace cv::ml;
using namespace std;
using namespace cv::xfeatures2d;void extractFeatures(const vector<string>& imagePaths, vector<Mat>& features, Ptr<SIFT> detector) {for (const auto& path : imagePaths) {Mat image = imread(path, IMREAD_GRAYSCALE);vector<KeyPoint> keypoints;Mat descriptors;detector->detectAndCompute(image, noArray(), keypoints, descriptors);features.push_back(descriptors);}
}int main() {// 图像路径vector<string> trainImages = {"image1.jpg", "image2.jpg", "image3.jpg"};vector<string> testImages = {"test1.jpg", "test2.jpg"};// 创建SIFT特征检测器Ptr<SIFT> detector = SIFT::create();// 提取训练集特征vector<Mat> trainFeatures;extractFeatures(trainImages, trainFeatures, detector);// 聚类,创建词典BOWKMeansTrainer bowTrainer(100); // 词典大小for (const auto& feature : trainFeatures) {bowTrainer.add(feature);}Mat dictionary = bowTrainer.cluster();// 创建BOW图像描述器Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("FlannBased");BOWImgDescriptorExtractor bowDE(detector, matcher);bowDE.setVocabulary(dictionary);// 训练分类器Ptr<SVM> svm = SVM::create();Mat trainData, labels;for (size_t i = 0; i < trainImages.size(); ++i) {Mat bowDescriptor;bowDE.compute(imread(trainImages[i], IMREAD_GRAYSCALE), bowDescriptor);trainData.push_back(bowDescriptor);labels.push_back((float)i); // 假设每个图像都有不同的标签}svm->train(trainData, ROW_SAMPLE, labels);// 测试分类器for (const auto& path : testImages) {Mat testImage = imread(path, IMREAD_GRAYSCALE);Mat bowDescriptor;bowDE.compute(testImage, bowDescriptor);float response = svm->predict(bowDescriptor);cout << "Image: " << path << " classified as: " << response << endl;}return 0;
}

result

Image: test1.jpg classified as: 0
Image: test2.jpg classified as: 1

七、适合图像分类的优秀的仓库

我可以为您提供一些图片的链接,您可以使用这些图片作为博客中的例子。以下是一些公共领域图片资源网站的链接,您可以从这些网站下载适合用于图像分类任务的图片:

  1. Pixabay - 提供大量免费图片,适用于个人和商业用途。

    • 链接: Pixabay
  2. Unsplash - 一个提供高分辨率照片的平台,所有照片均可免费使用。

    • 链接: Unsplash
  3. Pexels - 提供免费且高质量的图片,可用于商业用途,无需署名。

    • 链接: Pexels
  4. Open Images Dataset - Google 提供的一个大规模图片数据集,可用于图像识别和分类。

    • 链接: Open Images Dataset
      在这里插入图片描述
  5. MNIST Database - 手写数字的图片数据集,常用于图像分类和机器学习任务。

    • 链接: MNIST Database
      在这里插入图片描述
      在这里插入图片描述
  6. CIFAR-10 and CIFAR-100 - 包含多种类别的图片数据集,适用于图像分类。

    • 链接: CIFAR-10/CIFAR-100
  7. ImageNet - 一个非常大的图像数据库,用于视觉对象识别研究。

    • 链接: ImageNet
  8. Flickr - 通过Flickr的Creative Commons搜索,您可以找到许多可用于非商业或商业用途的图片。

    • 链接: Flickr Creative Commons
  9. Getty Images - 虽然Getty Images主要是版权图片,但它们也提供了一些免费图片的集合。

    • 链接: Getty Images
  10. NASA Image and Video Library - NASA提供的图片和视频资源,适合用于科学和教育目的。

    • 链接: NASA Image and Video Library

请注意,使用图片时,您应遵守每个网站的使用条款和版权信息。对于商业用途,建议仔细检查图片的许可证,确保合法使用。

八、 结论

通过以上步骤,我们使用C++和OpenCV实现了基于BOW算法的图像分类。本文介绍了从特征提取、词典创建到模型训练和分类的全过程。这仅仅是图像分类的入门,OpenCV还支持更多复杂的算法和深度学习模型,读者可以进一步探索,以便在实际项目中更好地应用这些技术。希望本文对您在学习和应用图像分类技术方面有所帮助。

最后,最后
如果觉得有用,麻烦三连👍⭐️❤️支持一下呀,希望这篇文章可以帮到你,你的点赞是我持续更新的动力

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/341916.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GPT-4o:重塑人机交互的未来

一个愿意伫立在巨人肩膀上的农民...... 一、推出 在人工智能&#xff08;AI&#xff09;领域&#xff0c;自然语言处理&#xff08;NLP&#xff09;技术一直被视为连接人类与机器的桥梁。近年来&#xff0c;随着深度学习技术的快速发展&#xff0c;NLP领域迎来了前所未有的变革…

使用正则表达式分割字符串

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 split()方法用于实现根据正则表达式分割字符串&#xff0c;并以列表的形式返回。其作用同字符串对象的split()方法类似&#xff0c;所不同的就是分割…

【Vue】路由的基本使用

文章目录 一、固定5个固定的步骤二、代码示例三、两个核心步骤四、完整代码 vue-router插件作用 修改地址栏路径时&#xff0c;切换显示匹配的组件 说明 Vue 官方的一个路由插件&#xff0c;是一个第三方包 官网 https://v3.router.vuejs.org/zh/ VueRouter的使用&#xff0…

【java基础】内部类

1、 非静态成员内部类可以访问所在类的全部方法和对象&#xff08;就相当于一个对象方法&#xff08;属于对象阶层和非静态方法同时加载在类加载之后&#xff09;&#xff09; 2、非静态成员内部类无法在该类&#xff08;就是非静态成员内部类所在的类&#xff09;的静态方法中…

期望18K,4年前端Cvte 视源股份一面挂

一面 1、自我介绍&#xff1f;毕业的时候一直在 xx 公司&#xff0c;你基本都在做什么项目&#xff1f; 2、你讲一下你主要负责哪一块的&#xff1f;balabala 3、你们的 json 是怎么定义组件间的联动的&#xff1f; 4、怎么确定区分两个 input&#xff1f; 5、你们是怎么触…

3. 使用tcpdump抓取rdma数据包

系列文章 第1章 多机多卡运行nccl-tests 和channel获取第2章 多机多卡nccl-tests 对比分析第3章 使用tcpdump抓取rdma数据包 目录 系列文章一、准备工作1. 源码编译tcpdump2. 安装wireshark 二、Tcpdump抓包三、Wireshark分析 一、准备工作 1. 源码编译tcpdump 使用 tcpdump…

基于web的垃圾分类回收系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;管理员管理&#xff0c;用户管理&#xff0c;公告管理&#xff0c;运输管理&#xff0c;基础数据管理 用户账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;运输管理&#xff0c;公告…

基于Django的博客系统之用HayStack连接elasticsearch增加搜索功能(五)

上一篇&#xff1a;搭建基于Django的博客系统数据库迁移从Sqlite3到MySQL&#xff08;四&#xff09; 下一篇&#xff1a;基于Django的博客系统之增加类别导航栏&#xff08;六&#xff09; 功能概述 添加搜索框用于搜索博客。 需求详细描述 1. 添加搜索框用于搜索博客 描…

C语言 | Leetcode C语言题解之第133题克隆图

题目&#xff1a; 题解&#xff1a; struct Node** visited; int* state; //数组存放结点状态 0&#xff1a;结点未创建 1&#xff1a;仅创建结点 2&#xff1a;结点已创建并已填入所有内容void bfs(struct Node* s) {if (visited[s->val] && state[s->val] 2…

图片和PDF展示预览、并支持下载

需求 展示图片和PDF类型&#xff0c;并且点击图片或者PDF可以预览 第一步&#xff1a;遍历所有的图片和PDF列表 <div v-for"(data,index) in parerFont(item.fileInfo)" :key"index" class"data-list-item"><downloadCard :file-inf…

【面试八股总结】锁:互斥锁、自旋锁、读写锁、乐观锁、悲观锁

使用加锁操作和解锁操作可以解决并发线程/进程的互斥问题。任何想进入临界区的线程&#xff0c;必须先执行加锁操作。若加锁操作顺利通过&#xff0c;则线程可进入临界区&#xff1b;在完成对临界资源的访问后再执行解锁操作&#xff0c;以释放该临界资源。 一、互斥锁与自旋锁…

【C语言】详解函数(下)(庖丁解牛版)

文章目录 1. 前言2. 数组做函数形参3. 函数嵌套调用和链式访问3.1 嵌套调用3.2 链式访问 1. 前言 详解C语言函数(上)的链接&#xff1a;http://t.csdnimg.cn/EGsfe 经过对函数的初步了解之后,相信大家已经对C语言标准库里的函数已经有初步的认知了&#xff0c;并且还学会了如…

Linux系统Docker部署Apache Superset并实现远程访问详细流程

目录 前言 1. 使用Docker部署Apache Superset 1.1 第一步安装docker 、docker compose 1.2 克隆superset代码到本地并使用docker compose启动 2. 安装cpolar内网穿透&#xff0c;实现公网访问 3. 设置固定连接公网地址 前言 作者简介&#xff1a; 懒大王敲代码&#xff0…

x86国产化麒麟系统上安装docker及问题解决

以前感觉安装docker没有问题&#xff0c;所以没有记录怎么安装的&#xff0c;最近在国产化系统上安装docker总是失败&#xff0c;经过仔细研究完全解决了该问题&#xff0c;特此记录。 参考链接&#xff1a; 在 OpenKylin 上安装 Docker 按照上面的链接可以知道整个docker安装…

浏览器工作原理

主要分为导航、获取数据、HTML解析、css解析、执行javaScript、渲染树几个步骤。 1.导航 DNS查询 DNS服务器类似于电话簿&#xff0c;里面包含公共的IP地址以及相关主机名数据库&#xff0c;我们输入一个域名&#xff0c;他能帮我们映射到对应的IP地址。&#xff08;第一次查…

Latex之图片排列的简单使用(以MiKTeX工具为例)

一、参考资料 Latex如何插入图片 Latex 学术撰写工具推荐&#xff08;在线、Windows、Mac、Linux&#xff09; 关于Latex并排多张图片及加入图片说明的方法 二、准备工作 1. 在线LaTex工具 Overleaf 2. 本地LaTex工具 MiKTeX 3. 测试用例 \documentclass{article} \ti…

题号:BC19 题目:反向输出一个四位数

题号&#xff1a;BC19 题目&#xff1a;反向输出一个四位数 废话不多说&#xff0c;上题目&#xff1a; 解题思路&#xff1a; 我们发现可以用%和/两个操作符就可以解决。 代码如下: int main() {int a 0;scanf("%d ",& a);while (a){printf("%d "…

Python Django 5 Web应用开发实战

大家好&#xff0c;我是爱编程的喵喵。双985硕士毕业&#xff0c;现担任全栈工程师一职&#xff0c;热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。…

【PB案例学习笔记】-17制作一个颜色选择框

写在前面 这是PB案例学习笔记系列文章的第17篇&#xff0c;该系列文章适合具有一定PB基础的读者。 通过一个个由浅入深的编程实战案例学习&#xff0c;提高编程技巧&#xff0c;以保证小伙伴们能应付公司的各种开发需求。 文章中设计到的源码&#xff0c;小凡都上传到了gite…

解决找不到api-ms-win-crt-runtime-l1-1-0.dll问题的5种方法

电脑已经成为我们生活和工作中不可或缺的工具&#xff0c;然而&#xff0c;由于各种原因&#xff0c;我们可能会遇到一些常见的问题&#xff0c;其中之一就是电脑缺失api-ms-win-crt-runtime-l1-1-0.dll文件。这个问题可能会导致电脑出现错误提示、程序无法正常运行等困扰。为了…