语音深度鉴伪识别项目实战:基于深度学习的语音深度鉴伪识别算法模型(三)音频去噪算法大全+Python源码应用

前言

深度学习技术在当今技术市场上面尚有余力和开发空间的,主流落地领域主要有:视觉,听觉,AIGC这三大板块。

目前视觉板块的框架和主流技术在我上一篇基于Yolov7-LPRNet的动态车牌目标识别算法模型已有较为详细的解说。与AIGC相关联的,其实语音模块在近来市场上面活跃空间很大。

从智能手机的语音助手到智能家居中的语音控制系统,再到银行和电信行业的语音身份验证,语音技术的应用日益广泛。那么对应现在ACG技术是可以利用原音频去进行训练学习,从而得到相对应的声音特征,从而进行模仿,甚至可以利用人工智能生成的语音可以以假乱真,给社会带来了严重的安全隐患。

当前,语音深度鉴伪识别技术已经取得了一定的进展。研究人员利用机器学习和深度学习方法,通过分析语音信号的特征,开发出了一系列鉴伪算法。

然而,随着生成大模型和其他语音合成技术的不断进步,伪造语音的逼真度也在不断提高,使得语音鉴伪任务变得愈加复杂和具有挑战性。本项目系列文章将从最基础的语音数据存储和详细分析开始,由于本系列专栏是有详细解说过深度学习和机器学习内容的,音频数据处理和现主流技术语音分类模型和编码模型将会是本项目系列文章的主体内容,具体本项目系列要讲述的内容可参考下图:
在这里插入图片描述语音模型的内容不是那么好掌握的,包含大量的数学理论知识以及大量的计算公式原理需要推理。且如果不进行实际操作很难够理解我们写的代码究极在神经网络计算框架中代表什么作用。不过我会尽可能将知识简化,转换为我们比较熟悉的内容。

我将尽力让大家了解并熟悉神经网络框架,保证能够理解通畅以及推演顺利的条件之下,尽量不使用过多的数学公式和专业理论知识。以一篇文章快速了解并实现该算法,以效率最高的方式熟练这些知识。希望有需求的小伙伴不要错过笔者精心打造的专栏。

上篇文章详细解答了部份音频噪音种类和效果,以及频谱减法(Spectral Subtraction)和自适应滤波(Adaptive Filtering),接下来我们需要继续了解小波变换去噪(Wavelet Transform Denoising)和维纳滤波(Wiener Filter)进行去噪算法结尾。

小波变换去噪(Wavelet Transform Denoising)

小波变换是一种能够同时在时域和频域中对信号进行分析的技术。它利用小波函数对信号进行多尺度分解,能够有效地捕捉信号的局部特征和突变点。在去噪应用中,小波变换被广泛应用于处理各种类型的信号,如语音信号、图像、医学信号等。

详细步骤

1. 小波分解

对信号进行小波分解,可以得到不同尺度上的逼近系数和细节系数。公式如下:

在这里插入图片描述

其中, ϕ j 0 k ϕ_{j_{0}k} ϕj0k是尺度函数, ψ j , k \psi_{j,k} ψj,k 是小波函数, c j v , k c_{j_v,k} cjv,k d j , k d_{j,k} dj,k​ 分别是尺度系数和细节系数。

2. 阈值处理

对细节系数进行阈值处理,去除噪声。常见的阈值处理方法有:

  • 硬阈值(Hard Thresholding):将小于阈值的系数置为零。

在这里插入图片描述

  • 软阈值(Soft Thresholding):将小于阈值的系数置为零,大于阈值的系数按一定规则缩小。

在这里插入图片描述

硬阈值是一种简单的置零的方法,而软阈值对于大于阈值的小波系数作了"收缩",即都减去阈值,从而使输入-输出曲线变成连续的。在阈值选选取上,人们普遍使用软阈值。改进的阈值是硬阈值和软阈值之间的一个折中,即当小波系数小于阈值时,不是简单地置为零,而是平滑地减小为零,当大于阈值时,小波系数幅度都减去阈值。这样,既保证了大的小波系数,又保证了加阈值后系数的平滑过渡。

阈值的选取

在小波变换去噪过程中,阈值选择至关重要,直接影响去噪效果。常用的阈值选择方法包括通用阈值(Universal Threshold)和自适应阈值。下面详细介绍这两种方法的计算逻辑。

1. 通用阈值(Universal Threshold)

通用阈值是由Donoho和Johnstone提出的一种简单有效的阈值选择方法。通用阈值的计算公式如下:
λ = σ 2 l o g ( n ) λ=σ\sqrt {2log(n)} λ=σ2log(n)
其中:

  • σ \sigma σ​ 是噪声标准差。

    • 估计噪声标准差:通常使用高频细节系数(如小波分解后的最后一级细节系数)的中值绝对偏差(MAD)来估计噪声标准差。

    • σ = m e d i a n ( ∣ d ∣ ) 0.6745 σ= \frac{median(∣d∣)}{0.6745} σ=0.6745median(d)

      sigma = np.median(np.abs(coeffs[-level])) / 0.6745
      
  • n n n​ 是信号的长度。

2.自适应阈值(SURE Thresholding)

自适应阈值(SURE,Stein’s Unbiased Risk Estimate)方法通过最小化估计风险(误差)来选择阈值。SURE方法可以针对不同尺度的系数单独选择阈值,更加灵活。

计算每个尺度的阈值:对于每个尺度的系数,计算一个最佳阈值。

计算SURE值:计算不同阈值下的SURE值,选择使SURE值最小的阈值。

def calculate_sure_threshold(coeff):n = len(coeff)sorted_coeff = np.sort(np.abs(coeff))risks = np.zeros(n)for i in range(n):t = sorted_coeff[i]risk = (n - 2 * (i + 1) + np.sum(np.minimum(coeff**2, t**2))) / nrisks[i] = riskbest_threshold = sorted_coeff[np.argmin(risks)]return best_threshold
3. 小波重构

对处理后的系数进行逆小波变换,重构信号。逆变换公式与分解公式相反,利用处理后的系数进行信号重建。

# 小波重构
denoised_signal = pywt.waverec(coeffs_thresh, wavelet)

整体去噪代码:

def wavelet_denoising(signal, wavelet='db1', level=1, thresholding='soft'):# 小波分解coeffs = pywt.wavedec(signal, wavelet, level=level)# 计算阈值universal_threshold = calculate_universal_threshold(coeffs)# 阈值处理coeffs_thresh = []for i, c in enumerate(coeffs):if i == 0:  # 保留逼近系数coeffs_thresh.append(c)else:# 使用SURE阈值处理细节系数sure_threshold = calculate_sure_threshold(c)if thresholding == 'hard':coeffs_thresh.append(pywt.threshold(c, sure_threshold, mode='hard'))elif thresholding == 'soft':coeffs_thresh.append(pywt.threshold(c, sure_threshold, mode='soft'))# 小波重构denoised_signal = pywt.waverec(coeffs_thresh, wavelet)return denoised_signaldef calculate_universal_threshold(coeffs):# 使用高频细节系数估计噪声标准差sigma = np.median(np.abs(coeffs[-1])) / 0.6745# 计算通用阈值threshold = sigma * np.sqrt(2 * np.log(len(coeffs[-1])))return thresholddef calculate_sure_threshold(coeff):n = len(coeff)if n == 0:return 0sorted_coeff = np.sort(np.abs(coeff))risks = np.zeros(n)for i in range(n):t = sorted_coeff[i]risk = (n - 2 * (i + 1) + np.sum(np.minimum(coeff**2, t**2))) / nrisks[i] = riskbest_threshold = sorted_coeff[np.argmin(risks)]return best_threshold

在这里插入图片描述

听音频效果去噪能力还是一般,比原音频要更加清晰一点。

维纳滤波(Wiener Filter)

维纳滤波(Wiener Filter)是由诺伯特·维纳提出的一种线性滤波方法,旨在通过最小化输出信号与期望信号之间的均方误差(MSE)来实现信号的去噪和估计。维纳滤波在时域和频域中都可以应用,是信号处理、图像处理等领域中的一种经典方法。

维纳滤波的核心思想是利用信号和噪声的统计特性,设计一个滤波器,使得滤波后的输出信号与期望信号之间的均方误差最小。算法逻辑可以分为四个步骤:

1.建模
  • 假设观测信号 x ( t ) x(t) x(t) 是真实信号 s ( t ) s(t) s(t)与噪声 n ( t ) n(t) n(t) 的叠加,即$ x(t)=s(t)+n(t)$。

  • 假设噪声 n ( t ) n(t) n(t)​是一个零均值的白噪声,且与信号 s ( t ) s(t) s(t) 互不相关。

2.频域表达
  • 将信号转换到频域,利用傅里叶变换,将维纳滤波器设计为频域滤波器。
3.维纳滤波器设计
  • 维纳滤波器的频域表达式为:
    H ( f ) = S s ( f ) S s ( f ) + S n ( f ) H(f)=\frac{S_{s}(f)}{S_{s}(f)+S_{n}(f)} H(f)=Ss(f)+Sn(f)Ss(f)
    其中, S s ( f ) S_{s}(f) Ss(f) S n ( f ) S_{n}(f) Sn(f)分别是信号和噪声的功率谱密度。
4.应用滤波器
  • 对观测信号应用维纳滤波器,得到估计的真实信号。
频域维纳滤波

在这里插入图片描述

计算信号和噪声的功率谱密度

  • 使用傅里叶变换计算观测信号的功率谱密度。
  • 使用估计方法或先验知识获取噪声的功率谱密度。

计算维纳滤波器的频域表达式

  • 根据信号和噪声的功率谱密度,计算维纳滤波器的频域表达式。

滤波和逆变换

  • 对观测信号进行傅里叶变换。
  • 应用维纳滤波器进行频域滤波。
  • 对滤波后的信号进行逆傅里叶变换,得到时域中的去噪信号。
def wiener_filter(noisy_signal, sample_rate, noise_power_spectrum):# 计算观测信号的功率谱密度f, Pxx = scipy.signal.welch(noisy_signal, sample_rate, nperseg=1024)# 估计信号的功率谱密度(假设信号与噪声独立,且噪声功率谱密度已知)signal_power_spectrum = np.maximum(Pxx - noise_power_spectrum, 1e-8)# 计算维纳滤波器的频域表达式H_wiener = signal_power_spectrum / (signal_power_spectrum + noise_power_spectrum)# 对观测信号进行傅里叶变换noisy_signal_fft = np.fft.fft(noisy_signal)# 对维纳滤波器进行频域插值H_wiener_interp = np.interp(np.fft.fftfreq(len(noisy_signal)), f, H_wiener)# 应用维纳滤波器进行频域滤波filtered_signal_fft = noisy_signal_fft * H_wiener_interp# 对滤波后的信号进行逆傅里叶变换filtered_signal = np.fft.ifft(filtered_signal_fft).realreturn filtered_signal

其中使用该算法前提条件需要计算出噪音的功率谱密度。噪声功率谱密度(Power Spectral Density, PSD)是描述噪声信号在频域中的能量分布的重要工具。在实际应用中,噪声功率谱密度通常需要根据观测到的噪声信号进行估计。我们可以通过自适应方法,通过统计分析或基于模型的方法估计噪声功率谱密度,适用于信号和噪声混合较复杂的情况。

def adaPtive_noisy(file,noise_estimation_duration=1.0):# 读取含噪信号音频文件noisy_signal, sample_rate = sf.read(file)# 使用Welch方法计算含噪信号的功率谱密度frequencies, Pxx  = scipy.signal.welch(noisy_signal, sample_rate, nperseg=10000)# 估计噪声功率谱密度noise_frames = int(noise_estimation_duration * sample_rate / 512)noise_power_spectrum = np.mean(Pxx[:noise_frames])# 可视化噪声功率谱密度plt.figure()plt.semilogy(frequencies, noise_power_spectrum)plt.title('Estimated Noise Power Spectral Density')plt.xlabel('Frequency [Hz]')plt.ylabel('Power Spectral Density [V^2/Hz]')plt.show()return noise_power_spectrum

那么音频各类去噪算法就先编码实现到此,后续我们可以根据不同的业务场景和需求来开展不同去噪效果的小型应用,而且也可以作为音视频直播或实现语音实时去噪效果。那么下一章节我们开始研究音频最为主要的特征以及对应含义,我们应该如何运用这些特征,如何通过特征来看透wav数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/342082.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

运维开发介绍

目录 1.什么是运维开发 2.作用 3.优点 4.缺点 5.应用场景 5.1.十个应用场景 5.2.网站和Web应用程序 6.案例 7.小结 1.什么是运维开发 运维开发(DevOps)是一种结合软件开发(Development)与信息技术运维(Opera…

Unity Apple Vision Pro 开发(一):开发前期准备【软硬件要求 | 开发者模式 | 无线调试打包】

文章目录 📕教程说明📕硬件要求📕软件要求⭐Xcode 15.2 及以上⭐visionOS 1.0 (21N301) SDK 或者更高版本⭐Unity 2022 LTS for Apple Silicon (2022.3.18f1及以上的版本)⭐Unity Pro/Unity Enterprise/Unity Industry的授权许可证 &#x1f…

天锐绿盾 | -办公加密系统、数据防泄密软件、图档加密、文件资料防泄密、源代码防止泄露!

天锐绿盾 |- 透明加密、数据防泄密系统、信息安全管理平台,旨在为用户提供全面的数据防泄露解决方案。该系统集成了文件透明加密技术、内网终端安全管理、以及私有云文档管理等功能,能够在不影响用户日常操作习惯和网络开放性的前提下,保护设…

HTML入门

HTML入门 注意&#xff0c;水文自用&#xff0c;//并非HTML注释语言&#xff0c;&#xff08;<&#xff01;–XXX->&#xff09;才是 初始文件结构 Vscode中 &#xff01; tab <!DOCTYPE html> <html lang"en"> //根元素&#xff0c;起始点 &l…

【机器学习基础】Python编程04:五个实用练习题的解析与总结

Python是一种广泛使用的高级编程语言,它在机器学习领域中的重要性主要体现在以下几个方面: 简洁易学:Python语法简洁清晰,易于学习,使得初学者能够快速上手机器学习项目。 丰富的库支持:Python拥有大量的机器学习库,如scikit-learn、TensorFlow、Keras和PyTorch等,这些…

“新高考”下分班怎么分?

来自安徽的张女士告诉我&#xff1a;上一年孩子升入了高中&#xff0c;但没想到才高一&#xff0c;孩子就面临了一个困难的挑选&#xff1a;312”分班&#xff01; 什么是312”分班呢&#xff1f;许多人或许不明白&#xff0c;便是要求学生在高一入学时&#xff0c;针对于3门必…

JVM双亲委派模型

在之前的JVM类加载器篇中说过&#xff0c;各个类加载器都有自己加载的范围&#xff0c;比如引导类加载器只加载Java核心库中的class如String&#xff0c;那如果用户自己建一个包名和类名与String相同的类&#xff0c;会不会被引导类加载器加载。可以通过如下代码测试&#xff0…

HTML静态网页成品作业(HTML+CSS)——企业装饰公司介绍网页(4个页面)

&#x1f389;不定期分享源码&#xff0c;关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 &#x1f3f7;️本套采用HTMLCSS&#xff0c;未使用Javacsript代码&#xff0c;共有4个页面。 二、作品演示 三、代…

探索UWB模块的多功能应用——UWB技术赋能智慧生活

超宽带&#xff08;Ultra-Wideband, UWB&#xff09;技术&#xff0c;凭借其高精度、低功耗和强抗干扰能力&#xff0c;正在成为智能家居领域的一项关键技术。UWB模块的应用不仅提高了智能家居设备的性能&#xff0c;还为家庭安全、设备管理和用户体验带来了显著的改善。 UWB模…

PyTorch 相关知识介绍

一、PyTorch和TensorFlow 1、PyTorch PyTorch是由Facebook开发的开源深度学习框架&#xff0c;它在动态图和易用性方面表现出色。它以Python为基础&#xff0c;并提供了丰富的工具和接口&#xff0c;使得构建和训练神经网络变得简单快捷。 发展历史和背景 PyTorch 是由 Fac…

Python语法详解module3(组合数据类型列表、元组、字典、集合详细用法)

目录 一、列表列表的创建多维列表列表的访问和修改列表的添加和删除列表的遍历使用 for 循环遍历使用 while 循环遍历同时遍历索引和元素列表推导式 常用的列表函数len()sort()reverse()index()count()extend()clear() 二、元组创建元组访问元组元素元组的不可变性元组的优点元…

Python3 迭代器和生成器

前言 本文主要介绍Python中的迭代器和生成器&#xff0c;主要内容包括 迭代器概述、生成器简介。 文章目录 前言一、迭代器简介二、生成器简介 一、迭代器简介 在 Python 中&#xff0c;迭代器(iterator)是一个实现了迭代器协议&#xff08;Iterator Protocol&#xff09;的…

交互设计专业解析:发展前景和薪资待遇

交互式设计专业是一门旨在帮助人们更好地与数字产品和服务互动的设计学科。交互式设计专业涉及人机交互、用户体验设计、用户界面设计等多个不同领域。交互式设计是当今数字时代不可缺少的一部分。它能为用户提供更好的体验和更高效的功能&#xff0c;为企业创造更高的价值和影…

智能家居ZigBee网关选型定制指南:主控,操作系统,天线设计,助力IoT开发者

随着科技的发展和人们生活水平的提高&#xff0c;智能家居以其便捷、舒适、安全等特点&#xff0c;逐渐走进千家万户&#xff0c;成为家装消费品换新升级的重要方向。在智能家居系统中&#xff0c;网关扮演着中枢控制器的角色&#xff0c;负责将各种设备连接到互联网上&#xf…

【已解决】typora打开就闪退

&#x1f60e; 作者介绍&#xff1a;我是程序员行者孙&#xff0c;一个热爱分享技术的制能工人。计算机本硕&#xff0c;人工制能研究生。公众号&#xff1a;AI Sun&#xff0c;视频号&#xff1a;AI-行者Sun &#x1f388; 本文专栏&#xff1a;本文收录于《AI实战中的各种bug…

halcon 算子 get_grayval_interpolated BiCubic 插值验证

测试发现 halcon BiCubic基函数中的a-1.0

申请医疗设备注册变更时,需要补充考虑网络安全的情况有哪些?

在申请医疗器械设备注册变更时&#xff0c;需要补充网络安全的情况主要包括以下几点&#xff1a; 网络安全功能更新&#xff1a;如果医疗器械的自研软件发生网络安全功能更新&#xff0c;或者合并网络安全补丁更新的情形&#xff0c;需要单独提交一份自研软件网络安全功能更新…

Linux驱动开发笔记(六)中断子系统及实验

文章目录 前言一、中断子系统框架1. 中断硬件简单描述2. 中断的软件描述2.1 中断处理的两部分模型2.2 系统框架 二、GIC v3中断控制器1. GIC v3基本结构1.1 Distributor1.2 Redistributor1.3 ITS1.4 CPU interface 2. 中断类型与特点3. 中断号 三、函数编写3.1 相关API函数3.2 …

idea启动项目 OutOfMemoryError: 内存不足

解决方案&#xff1a;修改共享构建进程堆大小即可 如果小伙伴们有什么疑问&#xff0c;欢迎下面评论。欢迎指正。如还有什么不懂的加我 QQ&#xff1a;517861659 如果没有及时回复&#xff0c;可以点我先问问AI机器人​编辑https://chatgpt.byabstudio.com/login?code2023070…

Fortigate防火墙二层接口的几种实现方式

初始配置 FortiGate出厂配置默认地址为192.168.1.99&#xff08;MGMT接口&#xff09;&#xff0c;可以通过https的方式进行web管理&#xff08;默认用户名admin&#xff0c;密码为空&#xff09;&#xff0c;不同型号设备用于管理的接口略有不同。 console接口的配置 防火墙…