计算机视觉与模式识别实验2-2 SIFT特征提取与匹配

文章目录

    • 🧡🧡实验流程🧡🧡
      • SIFT算法原理总结:
      • 实现SIFT特征检测和匹配
      • 通过RANSAC 实现图片拼接
      • 更换其他图片再次测试效果(依次进行SIFT特征提取、RANSAC 拼接)
    • 🧡🧡全部代码🧡🧡

🧡🧡实验流程🧡🧡

SIFT算法原理总结:

1.创建尺度空间:
高斯模糊去除噪声,强调了图像的重要特征
在这里插入图片描述
根据原图创建不同比例的新图像
在这里插入图片描述

2.采用高斯差异DOG增强特征
在这里插入图片描述
如下,对于某一比例的5张不同模糊程度的图像,进行差分
在这里插入图片描述

3.关键点定位(尺度不变性)
找出局部最大值和最小值(这里“局部”的含义:它不仅包括该图像的周围像素(像素所在的像素),还包括八度中上一张和下一张图像的九个像素)
这意味着将每个像素值与其他26个像素值进行比较,以确定是否为局部最大值/最小值。例如,在下图中,从第一个八度获得了三个图像。将标记为x的像素与相邻像素(绿色)进行比较,如果它是相邻像素中最高或最低的像素,则将其选择为关键点:
在这里插入图片描述
关键点的筛选
消除对比度低或非常靠近边缘的关键点:
采用二阶泰勒展开消除对比度低或非常靠近边缘的关键点、采用二阶Hessian矩阵来识别具有高边缘度但对少量噪点无鲁棒性的关键点

4.关键点方向分配(旋转不变性)
对于每个关键点和其周围的像素,都执行如下操作:
根据梯度计算幅度和方向,如下Gx=9,Gy=14则
在这里插入图片描述
在这里插入图片描述
随后创建大小和方向的柱状图
在这里插入图片描述

5.生成描述符
已经通过3、4生成了具有尺度不变性和旋转不变性的关键点,对于每个关键点,使用相邻像素,它们的方向和大小为该关键点生成一个唯一的指纹,称为“描述符”。

6.关键点匹配
使用描述子之间的距离或相似度度量来匹配不同图像中的关键点,通常采用最近邻或 k近邻方法来进行匹配。
(在opencv中,BFMatcher.match() 和BFMatcher.knnMatch(),第一个返回最佳匹配,第二个返回前k个最佳的匹配,k值由用户指定。)




实现SIFT特征检测和匹配

原始图像如下:
在这里插入图片描述

截出两个图像(分别截取前宽度的4/5和后4/5部分)
在这里插入图片描述

画出关键点
在这里插入图片描述

SIFT匹配(总共529个匹配,按连线长度升序,画出全部线)
在这里插入图片描述

为方便观察,画出按连线长度前100匹配的连线
在这里插入图片描述

将右侧图片旋转90度,重复上述步骤
在这里插入图片描述
在这里插入图片描述

将右侧图片旋转15度,并缩放到原图0.8倍,重复上述步骤
在这里插入图片描述
在这里插入图片描述




通过RANSAC 实现图片拼接

右侧图片正放
在这里插入图片描述
拼接结果:
在这里插入图片描述


右侧图片旋转90度
在这里插入图片描述
拼接结果:
在这里插入图片描述


右侧图片旋转15度并缩放到0.8倍
在这里插入图片描述
拼接结果:
在这里插入图片描述




更换其他图片再次测试效果(依次进行SIFT特征提取、RANSAC 拼接)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

🧡🧡全部代码🧡🧡

import numpy as np
import cv2
from matplotlib import pyplot as plt
def cv_show(title,img):cv2.imshow(title, img)cv2.waitKey(0)cv2.destroyAllWindows()
"""SIFT 图像特征连接+ RANSAC拼接
"""def check_and_draw_KeyPoint(img1,img2):img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)# Siftsift = cv2.SIFT_create()kp1, des1 = sift.detectAndCompute(img1,None)kp2, des2 = sift.detectAndCompute(img2,None)# len(kp1), len(kp2)# Draw KeyPointimgShow1 = cv2.drawKeypoints(img1,kp1,None,color=(255,0,255)) #画出特征点,并显示为红色圆圈imgShow2 = cv2.drawKeypoints(img2,kp2,None,color=(255,0,255)) #画出特征点,并显示为红色圆圈cv_show("KeyPoint", np.hstack((imgShow1, imgShow2)))return img1,img2,kp1,kp2,des1,des2def match_KeyPoint(img1,img2,kp1,kp2,des1,des2,show_line_num=100):# Feature Matchingbf = cv2.BFMatcher(cv2.NORM_L1, crossCheck=True)matches = bf.match(des1,des2)matches =sorted(matches, key=lambda x:x.distance)# print(len(matches))imgShow = cv2.drawMatches(img1, kp1, img2, kp2, matches[0:show_line_num], None, flags=2)cv_show("Match",imgShow)def concat_Image(img1,img2,kp1,kp2,des1,des2):# 匹配特征,并返回透视变换矩阵matcher = cv2.BFMatcher()rawMatches = matcher.knnMatch(des2, des1, 2)matches = []for m in rawMatches:if len(m) == 2 and m[0].distance < m[1].distance * 0.75:matches.append((m[0].trainIdx, m[0].queryIdx))kp1 = np.float32([kp.pt for kp in kp1])kp2 = np.float32([kp.pt for kp in kp2])if len(matches) > 4:ptsA = np.float32([kp2[i] for (_, i) in matches])ptsB = np.float32([kp1[i] for (i, _) in matches])(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, 4.0)result = cv2.warpPerspective(img2, H, (img2.shape[1] + img1.shape[1], img2.shape[0]))result[0:img1.shape[0], 0:img1.shape[1]] = img1cv_show("Concat Image",result)if __name__=="__main__":# Read Original Imageimage = cv2.imread('img/test2_Sift.jpg')height, width, _ = image.shapeimage = cv2.resize(image,(int(width*4/6),int(height*4/6))) # 图片有点宽,缩放一下height, width, _ = image.shape# 截取前4/5部分和后4/5部分img1 = image[:, 0 : int(width * 4 / 5)]img2 = image[:, int(width / 5) : width]img1 = cv2.imread("img/test2_river1.png")img2 = cv2.imread("img/test2_river2.png")# 可注释)图像转变2:img2旋转90度
#     img2 = cv2.rotate(img2, cv2.ROTATE_90_CLOCKWISE) # 旋转90度
#     img2 = cv2.resize(img2,(img2.shape[1], img1.shape[0]))# 可注释)图像转变3:img2旋转15度,并且缩放到0.9倍,同时img1设置跟img2同样高度,并且宽度按比例变换
#     center=(width/2,height/2)
#     angle=15
#     scale=0.8
#     M=cv2.getRotationMatrix2D(center,angle,scale)
#     img2=cv2.warpAffine(img2,M,(int(width),int(1.1*height)))
#     img1=cv2.resize(img1,(int(img1.shape[1]*img2.shape[0]/img1.shape[0]), img2.shape[0]))cv_show("spilt", np.hstack((img1, img2))) #拼接显示原图# 调用自定义函数img1,img2,kp1,kp2,des1,des2=check_and_draw_KeyPoint(img1,img2) # 检测并画出关键点match_KeyPoint(img1,img2,kp1,kp2,des1,des2, show_line_num=100) # 连接关键点concat_Image(img1,img2,kp1,kp2,des1,des2) # 拼接图像

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/342924.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ROG CETRA II 降临2代RGB版 使用体验!

现在Type-C接口的设备越来越多&#xff0c;不仅是台式机开始普及&#xff0c;像NUC、笔记本、Switch、安卓手机等也都是Type-C接口了&#xff0c;所以游戏耳机方面也开始迭代。Type-C还有一个好处就是供电足以撑起降噪处理和RGB灯效&#xff0c;你懂的。今天跟大家分享的就是RO…

CentOS 7~9 救援模式恢复root密码实战指南

在管理Linux服务器时&#xff0c;忘记root密码是一件棘手的事情&#xff0c;但幸运的是&#xff0c;CentOS提供了救援模式来帮助我们重置root密码。本文将详细介绍如何通过GRUB引导菜单进入紧急模式&#xff08;或称为救援模式&#xff09;&#xff0c;进而恢复root用户的密码。…

【ArcGISProSDK】 读取多面体信息并导出XML

结果展示 代码 using ArcGIS.Core.CIM; using ArcGIS.Core.Data; using ArcGIS.Core.Data.DDL; using ArcGIS.Core.Geometry; using ArcGIS.Core.Internal.CIM; using ArcGIS.Desktop.Catalog; using ArcGIS.Desktop.Core; using ArcGIS.Desktop.Editing; using ArcGIS.Deskto…

StableDiffusion简单使用教程

以下是一个简单的Stable Diffusion使用教程 一&#xff1a;准备工作 1. 安装所需软件&#xff1a;下载并安装 Stable Diffusion 相关程序。 2. 配置硬件&#xff1a;建议具备一定性能的显卡&#xff0c;以确保流畅运行。 二、启动软件 1. 打开 Stable Diffusion 应用程序。…

tomcat服务器之maxHttpHeaderSize

背景&#xff1a;在OA流程表单中&#xff0c;填写了200条数据&#xff0c;一提交&#xff0c;秒报400错误&#xff0c;且请求没有打到后端中&#xff08;无报错日志&#xff09;&#xff0c;一开始以为是谷歌浏览器的问题&#xff0c;可百度上关于这个错误的解决方案都是清除缓…

用ConcurrentHashMap+锁 优化synchronized方法

1、问题发现 虽说&#xff0c;synchronized 关键字万能的&#xff0c;在并发上去之后&#xff0c;这个插入就显得很慢了。仔细观察发现&#xff0c;其实锁的粒度还是再细点&#xff0c;可以根据AlarmRules对象的ID来锁。 2、解决过程 很明显synchronized(rules) 这个写法是有问…

问题:棕色试剂瓶用于盛装见光易分解的试剂或溶剂。 #其他#学习方法#微信

问题&#xff1a;棕色试剂瓶用于盛装见光易分解的试剂或溶剂。 A、正确 B、错误 参考答案如图所示

Flutter基础 -- Flutter常用组件

目录 1. 文本组件 Text 1.1 基础用法 1.2 Text 定义 1.3 Text 示例 1.4 Text.rich、RichText 、TextSpan 1.5 RichText 示例 2. 导入资源 2.1 加入资源 2.2 加入图片 3. 图片组件 image 3.1 colorBlendMode 混合参数 3.2 fit 图片大小适配 3.3 ImageProvider 图片…

(CVPRW,2024)可学习的提示:遥感领域小样本语义分割

文章目录 相关资料摘要引言方法训练基础类别新类别推理 相关资料 论文&#xff1a;Learnable Prompt for Few-Shot Semantic Segmentation in Remote Sensing Domain 代码&#xff1a;https://github.com/SteveImmanuel/OEM-Few-Shot-Learnable-Prompt 摘要 小样本分割是一项…

开源低代码平台技术为数字化转型赋能!

实现数字化转型升级是很多企业未来的发展趋势&#xff0c;也是企业获得更多发展商机的途径。如何进行数字化转型&#xff1f;如何实现流程化办公&#xff1f;这些都是摆在客户面前的实际问题&#xff0c;借助于开源低代码平台技术的优势特点&#xff0c;可以轻松助力企业降低开…

落地护眼台灯有什么作用?性能卓越的五款大路灯分享

近期&#xff0c;我频繁收到来自粉丝朋友的热切问题&#xff0c;询问落地护眼台灯有什么作用&#xff1f;落地护眼台灯哪个牌子好的问题。随着人们的护眼意识更强&#xff0c;了解到了光线对台灯的影响&#xff0c;纷纷都用起落地护眼台灯来&#xff0c;护眼落地灯能够通过技术…

vue3+elementPlus实现Radio单选切换显示不同内容

el-radio-group 组件方法&#xff1a; <template><el-radio-group v-model"radio"><el-radio :value"0">阶梯达标</el-radio><el-radio :value"1">限时达标</el-radio></el-radio-group> </templ…

Mixly UDP局域网收发数据

一、开发环境 软件&#xff1a;Mixly 2.0在线版 硬件&#xff1a;ESP32-C3&#xff08;立创实战派&#xff09; 固件&#xff1a;ESP32C3 Generic(UART) 测试工具&#xff1a;NetAssist V5.0.1 二、实现功能 ESP32作为wifi sta连接到路由器&#xff0c;连接成功之后将路由器…

SPRM6-A-0B3、SPRM10-A-1C3三位四通比例方向阀放大器

SPRM6-A-0C3、SPRM6-A-0C1、SPRM6-A-0C10、SPRM6-A-0C30、SPRM6-A-0B1、SPRM6-A-0B3、SPRM10-A-1C1、SPRM10-A-1C3、SPRM10-A-1C10、SPRM10-A-1C30、SPRM10-A-1B1、SPRM10-A-1B3直动式操作比例换向阀:安装连接尺寸符合IS04401;用于液压执行器的方向与速度控制:带螺纹安装比例电…

外企跨国大数据迁移的注意事项

跨国数据迁移&#xff0c;对汽车行业来说&#xff0c;是一桩大事。跨国公司在进行这一操作时&#xff0c;会遇到不少挑战&#xff0c;比如网络延迟、数据安全、成本控制等等。今天&#xff0c;咱们就聊聊跨国大数据迁移中&#xff0c;跨国车企需要留意的几个关键点。 跨国大数据…

618网购节,电商能挡住恶意网络爬虫的攻击吗?

目录 爬虫盗取电商数据的步骤 电商平台如何发现网络爬虫&#xff1f; 如何拦截违法网络爬虫 2023年&#xff0c;杭州中院审结了两起涉及“搬店软件”的不正当竞争案件。本案的原告是国内某大型知名电子商务平台的运营主体&#xff0c;而被告则是开发了一款名为“某搬家快速商品…

动态IP与静态IP的优缺点

在网络连接中&#xff0c;使用动态和静态 IP 地址取决于连接的性质和要求。静态 IP 地址通常更适合企业相关服务&#xff0c;而动态 IP 地址更适合家庭网络。让我们来看看动态 IP 与静态 IP 的优缺点。 1.静态IP的优点&#xff1a; 更好的 DNS 支持&#xff1a;静态 IP 地址在…

滨江区代理记账——专业、便捷的服务,让您的企业更加规范、高效

随着社会经济的发展和企业的规模扩大&#xff0c;依法纳税、做好财务工作变得越来越重要&#xff0c;而代理记账&#xff0c;就是这样一个专业的服务平台&#xff0c;为满足广大企业和个体户的会计需求&#xff0c;帮助他们规范财务管理&#xff0c;提高效率。 代理记账可以帮助…

elementUI el-table高度heght和总结summary 同时使用 表格样式异常

背景 同时使用height和 show-summary 样式错位 解决方案 在钩子函数updated 中重新渲染此表格 <el-table :height"autoHeight" show-summary ref"dataTable" >updated() {this.$nextTick(() >{this.$refs.dataTable.doLayout();})},更改后的效果 …

教程 | Navicat 17 管理连接新方法

Navicat 17 提供了比以往更多的连接数据库实例的方式。除了传统的连接字符串方式以外&#xff0c;Navicat 17 还支持 URI 连接&#xff0c;无论身在何处&#xff0c;都可以轻松地通过 URI 访问对象。另外&#xff0c;还有一个新的管理连接功能&#xff0c;即允许你通过一个以用…