实战 | YOLOv10 自定义数据集训练实现车牌检测 (数据集+训练+预测 保姆级教程)

导读

    本文主要介绍如何使用YOLOv10在自定义数据集训练实现车牌检测 (数据集+训练+预测 保姆级教程)。  

YOLOv10简介

    YOLOv10是清华大学研究人员在Ultralytics Python包的基础上,引入了一种新的实时目标检测方法,解决了YOLO以前版本在后处理和模型架构方面的不足。通过消除非最大抑制(NMS)和优化各种模型组件,YOLOv10在降低计算像素数的同时实现了相当的性能。大量实验证明,YOLOv10在多个模型上实现了卓越的精度-延迟权衡。

图片

概述

    实时目标检测旨在优先延迟准确的预测图像中的物体类别和位置。YOLO 系列在性能和效率之间取得了平衡,因此一直处于较低水平。然而,对 NMS 的依赖和架构的低效阻碍了性能的实现。YOLOv10 通过为无 NMS 训练引入了一致的双重分配并以提高准确性为导向的核心模型设计策略,解决了答案。

网络架构

    YOLOv10 的结构建立在以前YOLO模型的基础上,同时引入了几项关键创新。模型架构由以下部分组成:

    • 主干网: YOLOv10中的主干网负责特征提取,它使用了增强版的CSPNet(跨阶段部分网络),以改善梯度流并减少计算能力。

    • 颈部:颈部设计用于汇聚不同的尺度成果,并将其传递到头部。它包括PAN(路径聚合网络)层,可实现有效的多尺度特征融合。

    • 一对多头:在训练过程中为每个对象生成多个预测,以提供丰富的监督信号并提高学习准确性。

    • 一头:在推理过程中选择一个对象,无需NMS,从而减少并提高结果质量。

主要功能

    • 无NMS 模式:利用一致的配置来消除对NMS 的需求,从而减少错误判断。

    • 整体模型设计:从业人员绩效评估和绩效评价模块,包括轻量级数据分析、通道去耦和质量引导设计。

    • 增强的模型功能:应对大数据和部分自觉模块,在不增加大量计算成本的情况下提高性能。

模型支持:

YOLOv10有多种模型,可满足不同的应用需求:

    • YOLOv10-N:用于资源极其有限的环境的纳米版本。

    • YOLOv10-S:兼顾速度和精度的小型版本。

    • YOLOv10-M:通用中型版本。

    • YOLOv10-B:平衡型,宽度增加,精度更高。

    • YOLOv10-L:大型版本,精度更高,但计算资源增加。

    • YOLOv10-X:超大型版本可实现高精度和性能。

特性

    在准确性和效率方面,YOLOv10 优于YOLO 以前的版本和其他模型。例如,在 COCO 数据集上,YOLOv10-S 的速度是 RT-DETR-R18 的 1.8 倍,而 YOLOv10-B 与 YOLOv9-C 相比,在性能相同的条件下,延迟浏览器打开 46%,参数浏览器打开 25%。下图是使用 TensorRT FP16 在 T4 GPU 上的测试结果:

图片

实验和结果

    YOLOv10 在 COCO 等标准基准上进行了广泛测试,证明了卓越的性能和准确性。与先前的版本和其他当代版本相比,YOLOv10 在延迟和准确性方面都有显著提高。

图片

      

YOLOv10自定义数据集训练

    【1】准备数据集。数据集标注使用LabelImg,具体使用和标注可参考下面文章:

实战 | YOLOv8自定义数据集训练实现手势识别 (标注+训练+预测 保姆级教程)

    这里直接给出数据集,大家可以自行下载:

https://github.com/AarohiSingla/YOLOv10-Custom-Object-Detection/tree/main/custom_dataset/dataset

    数据集包含300张图片样本,训练集210张,验证集60张,测试集30张。

图片

图片

图片

图片

图片

    类别只有1类,所以序号都为0。

    【2】配置训练环境。

    ① 下载yoloV10项目:

git clone https://github.com/THU-MIG/yolov10.git

    ② 解压后切换到yoloV10目录下,安装依赖项:

cd yolov10
pip install .

    ③ 下载预训练模型:

图片

import osimport urllib.request
# Create a directory for the weights in the current working directoryweights_dir = os.path.join(os.getcwd(), "weights")os.makedirs(weights_dir, exist_ok=True)
# URLs of the weight filesurls = [    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10n.pt",    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10s.pt",    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10m.pt",    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10b.pt",    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10x.pt",    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10l.pt"]
# Download each filefor url in urls:    file_name = os.path.join(weights_dir, os.path.basename(url))    urllib.request.urlretrieve(url, file_name)    print(f"Downloaded {file_name}")

图片

    【3】模型训练

yolo task=detect mode=train epochs=100 batch=16 plots=True model=weights/yolov10n.pt data=custom_data.yaml

    custom_data.yaml配置如下:

图片

    【4】 模型推理:

    图片推理:

yolo task=detect mode=predict conf=0.25 save=True model=runs/detect/train/weights/best.pt source=test_images_1/veh2.jpg

​​​​​​​

from ultralytics import YOLOv10import supervision as svimport cv2
classes = {0: 'licence'}
model = YOLOv10('runs/detect/train/weights/best.pt')image  = cv2.imread('test_images_1/veh2.jpg')
results = model(source=image, conf=0.25, verbose=False)[0]detections = sv.Detections.from_ultralytics(results)box_annotator = sv.BoxAnnotator()
labels = [    f"{classes[class_id]} {confidence:.2f}"    for class_id, confidence in zip(detections.class_id, detections.confidence)]annotated_image = box_annotator.annotate(    image.copy(), detections=detections, labels=labels)
cv2.imshow('result', annotated_image)cv2.waitKey()cv2.destroyAllWindows()

图片

    视频推理:

yolo task=detect mode=predict conf=0.25 save=True model=runs/detect/train/weights/best.pt source=b.mp4
from ultralytics import YOLOv10import supervision as svimport cv2
classes = {0: 'licence'}
model = YOLOv10('runs/detect/train/weights/best.pt')
def predict_and_detect(image):    results = model(source=image, conf=0.25, verbose=False)[0]    detections = sv.Detections.from_ultralytics(results)    box_annotator = sv.BoxAnnotator()
    labels = [        f"{classes[class_id]} {confidence:.2f}"        for class_id, confidence in zip(detections.class_id, detections.confidence)    ]    annotated_image = box_annotator.annotate(        image.copy(), detections=detections, labels=labels    )    return annotated_image
def create_video_writer(video_cap, output_filename):    # grab the width, height, and fps of the frames in the video stream.    frame_width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))    frame_height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))    fps = int(video_cap.get(cv2.CAP_PROP_FPS))    # initialize the FourCC and a video writer object    fourcc = cv2.VideoWriter_fourcc(*'MP4V')    writer = cv2.VideoWriter(output_filename, fourcc, fps,                             (frame_width, frame_height))    return writer
video_path = 'b.mp4'cap = cv2.VideoCapture(video_path)
output_filename = "out.mp4"writer = create_video_writer(cap, output_filename)
while True:    success, img = cap.read()    if not success:        break    frame = predict_and_detect(img)    writer.write(frame)    cv2.imshow("frame", frame)        if cv2.waitKey(1)&0xFF ==27: #按下Esc键退出        break
cap.release()writer.release()

图片

—THE END—

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/344396.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mac M1下安装PySide2

在M1下装不了PySide2, 是因为PySide2没有arm架构的包 1 先在M1上装qt5 安装qt主要是为了能用里面的Desinger, uic, rcc brew install qt5 我装完的路径在/opt/homebrew/opt/qt5 其中Designer就是用来设计界面的 rcc用resource compiler, 编绎rc资源文件的, 生成对应的py文件…

电子电气架构——车载诊断DTC一文通

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 没有人关注你。也无需有人关注你。你必须承认自己的价值,你不能站在他人的角度来反对自己。人生在世,最怕的就是把别人的眼光当成自己生活的唯一标…

【模拟-BM99 顺时针旋转矩阵】

题目 BM99 顺时针旋转矩阵 描述 有一个NxN整数矩阵,请编写一个算法,将矩阵顺时针旋转90度。 给定一个NxN的矩阵,和矩阵的阶数N,请返回旋转后的NxN矩阵。 分析 模拟,写几个样例,分析一下新矩阵元素下标与原矩阵元素…

Windows系统问题

Windows系统问题 一、补丁更新提示:0x80070643问题:解决方法:1.以管理员权限运行【cmd】。2.禁用 【Windows RE】,请运行reagentc /disable。3.回收【Windows RE】恢复分区空间。4.准备新的【Windows RE】恢复分区空间。5.配置并启…

并查集进阶版

过关代码如下 #define _CRT_SECURE_NO_WARNINGS #include<bits/stdc.h> #include<unordered_set> using namespace std;int n, m; vector<int> edg[400005]; int a[400005], be[400005]; // a的作用就是存放要摧毁 int k; int fa[400005]; int daan[400005]…

【保姆级图文教程】QT下载、安装、入门、配置VS Qt环境

【保姆级图文教程】QT下载、安装、入门、配置VS Qt环境-CSDN博客 0.QT介绍 QT 是一个跨平台的应用程序开发框架&#xff0c;它提供了丰富的工具和类库&#xff0c;用于开发图形用户界面&#xff08;GUI&#xff09;程序。Qt 提供了 C 编程语言接口&#xff0c;同时也支持其他…

Xcode设置cocoapods库的最低兼容版本

目录 前言 1.使用cocoapods遇到的问题 2.解决办法 1.用法解释 1. config.build_settings: 2.IPHONEOS_DEPLOYMENT_TARGET 2.使用实例 3.注意事项 1.一致性 2.pod版本 前言 这篇文章主要是介绍如何设置cocoapods三方库如何设置最低兼容的版本。 1.使用cocoapods遇到的…

安装node

下载地址 Node.js — Run JavaScript Everywhere 按照下面的图操作即可 然后就下载完了。

【NetTopologySuite类库】生成凸包

介绍 计算几何体的凸包。凸包是最小的凸几何体&#xff0c;包含输入几何体中的所有点。使用Graham Scan算法。 API地址&#xff1a; https://nettopologysuite.github.io/NetTopologySuite/api/NetTopologySuite.Algorithm.ConvexHull.html 示意图 示例代码 需在NuGet中安装…

牛客NC32 求平方根【简单 二分 Java/Go/C++】

题目 题目链接&#xff1a; https://www.nowcoder.com/practice/09fbfb16140b40499951f55113f2166c 思路 Java代码 import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定&#xff0c;请勿修改&#xff0c;直接返回方法规定的值即可*** para…

OpenCV学习(4.8) 图像金字塔

1.目的 在这一章当中&#xff0c; 我们将了解图像金字塔。我们将使用图像金字塔创建一个新的水果&#xff0c;“Orapple”我们将看到这些功能&#xff1a; cv.pyrUp&#xff08;&#xff09; &#xff0c; cv.pyrDown&#xff08;&#xff09; 在通常情况下我们使用大小恒定…

Direct local .aar file dependencies are not supported when building an AAR.

最近升级了最新的AndroidStdio版本&#xff0c;然后导入之前的安卓工程 然后经过一番折腾后项目可以跑了&#xff0c;但是意外发现出release包的时候报错了&#xff0c; Direct local .aar file dependencies are not supported when building an AAR. 网上有很多解决方法&am…

IPv6 归属地城市级 Api 接口 - 精准定位每一个连接

随着互联网的快速发展&#xff0c;人们对于网络安全和隐私保护的要求也越来越高。在网络世界中&#xff0c;每一个连接都有其特定的地理位置&#xff0c;了解连接的归属地信息对于识别恶意行为以及网络运营具有重要意义。IPv6 归属地城市级 Api 接口就能够实现对连接的精准定位…

今年618,京东和爱奇艺为大屏品质“把关”

今年618电视大战&#xff0c;还是打响了。 根据京东618数据显示&#xff0c;618开门红阶段热卖TOP10电视均为75英寸以上的大屏&#xff0c;拥有超高画质的MiniLED电视成交量同比增长5倍。可以看到&#xff0c;大屏电视逐步成为消费主流&#xff0c;尤其是拥有出色视听体验的高…

数据库安全加固与API防护策略

在数字化时代&#xff0c;数据库作为企业核心资产的安全性至关重要。然而&#xff0c;随着网络攻击手段的不断演进&#xff0c;数据库和API接口成为了黑客的主要攻击目标。本文将探讨数据库被攻击、API接口被滥用的情况&#xff0c;并提供一系列实用的防护措施&#xff0c;旨在…

易飞销货单出货时审核库存检查

公司接到一客户因品种多而数量少&#xff0c;单一出货计划行比较多&#xff0c;而只上了生产ERP易飞&#xff0c;审核时经常会出现倒催货&#xff0c;提前做销售单&#xff0c;行数有时超30行以上&#xff0c;审核跳窗报错时也不方便查找&#xff0c;特写一外挂程序&#xff0c…

C语言中常用辅助调试信息的宏定义

宏&#xff1a; _ _ F I L E _ _ \color{red} \_\_FILE\_\_ __FILE__ 在编译时会替换成当前的源文件名称&#xff0c;字符串类型。 printf("file name:%s\r\n", __FILE__);则输出 file name:.\app\bsp.c宏&#xff1a; _ _ F U N C T I O N _ _ \color{red} \_\_F…

文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《基于日间-日内不确定集的中长期电源扩展规划》

本专栏栏目提供文章与程序复现思路&#xff0c;具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

人工智能--教育领域的运用

文章目录 &#x1f40b;引言 &#x1f40b;个性化学习 &#x1f988;体现&#xff1a; &#x1f988;技术解析&#xff1a; &#x1f40b;智能辅导与虚拟助手 &#x1f988;体现&#xff1a; &#x1f988;技术解析&#xff1a; &#x1f40b;自动评分与评估 &#x1f…

2024 vite 静态 scp2 自动化部署

1、导入库 npm install scp2 // 自动化部署 npm install chalk // 控制台输出的语句 npm install ora2、核心代码 创建文件夹放在主目录下的 deploy/index.js 复制粘贴以下代码&#xff1a; import client from scp2; import chalk from chalk; import ora from ora;const s…