接口自动化Requests+Pytest基础实现

目录

  • 1. 数据库以及数据库操作
    • 1.1 概念
    • 1.2 分类
    • 1.3 作用
  • 2 python操作数据库的相关实现
    • 2.1 背景
    • 2.2 相关实现
  • 3. pymysql基础
    • 3.1 整个流程
    • 3.2 案例
    • 3.3 Pymysql工具类封装
  • 4 事务
    • 4.1 案例
    • 4.2 事务概念
    • 4.3 事务特征
  • 5. requests库
    • 5.1 概念
    • 5.2 角色定位
    • 5.3 安装
    • 5.4 校验
    • 5.5 requests之GET请求
    • 5.6 requests之POST请求
    • 5.7 requests之PUT请求
    • 5.8 requests之DELETE请求
    • 5.9 补充
    • 5.10 响应
    • 5.11 登录案例
      • 5.11.1实现思路
      • 5.11.2 实现
  • 6. PyTest基础
    • 6.1 pytest的配置文件
    • 6.2 setup和teardown
    • 6.3 实现
    • 6.4 数据参数化
    • 6.5 测试报告插件
    • 6.6 集成思路
  • 7. 接口自动化实现
    • 7.1 自动化流程
    • 7.2 设计接口测试用例
    • 7.3 框架架构的图解
    • 7.4 项目架构目录
    • 7.5 项目框架的实现
  • 8 总结

1. 数据库以及数据库操作

1.1 概念

是存储数据的仓库,程序中数据的载体

1.2 分类

  • 关系型数据库:安全
    • 例如:MySQL、Oracle、SQLite
    • database
      • tables
        • 行+列
  • 非关系型数据库:高效
    • 例如:Redis、MongODB
    • 数据存储的多样性:键值对、列表、字符串…

1.3 作用

数据库和变量都可以存储数据,二者的区别是

持久性不同:数据库可以持久性能够存储数据(数据被写入磁盘中),变量不能(运行在内存中)

2 python操作数据库的相关实现

2.1 背景

python(等不同语言)本身不具备直连数据库的功能,必须导入第三方包

2.2 相关实现

数据库驱动

  • MySQLdb
  • MySQLClientt
  • (重点)Pymysql

3. pymysql基础

3.1 整个流程

  1. 创建连接connection
  2. 获取游标cursor
  3. 执行SQL语句
    1. 执行查询语句
    2. 执行增删改语句
      1. 判断是否出现异常
        • 否(没有出现异常)–>提交事务
        • 是(出现异常)–>回滚事务
  4. 关闭游标cursor
  5. 关闭连接connection
#  连接pymysql# 1. 导包
import pymysql# 2. 创建游标
con = pymysql.connect(host='127.0.0.1', port=3306, database='test', user='root', password='123456', charset='utf8')
# 3. 创建链接
cur = con.cursor()
# 4. 执行sql
# 编写sql
# sql = "select * from t_area"
sql = "insert into t_area(area_name, priority) values('西安', '1')"
# 执行SQL
cur.execute(sql)
# 逐行获取数据
# result = cur.fetchone()
# print(result)
# 获取素有数据
result = cur.fetchall()
for row in result:print(row[3])
# 影响的行数
print("影响行数:", cur.rowcount)
# 提交事务
con.commit()
# 5. 释放资源
cur.close()
con.close()

注意:

  • 增删改执行完毕后,需要执行提交操作,否则执行失败
  • 提交方式:
    • 手动提交:连接对象.commit()
    • 自动提交:autocommit = True (默认提交)

3.2 案例

# 1. 创建连接connection
# 2. 获取游标cursor
# 3. 执行SQL语句
#    1. 执行查询语句
#    2. 执行增删改语句
#       1. 判断是否出现异常
#          - 否(没有出现异常)-->提交事务
#          - 是(出现异常)-->回滚事务
# 4. 关闭游标cursor
# 5. 关闭连接connection
import pymysqlcon = pymysql.connect(host='127.0.0.1', port=3306, database='test', user='root', passwd='123456', charset='utf8')
cur = con.cursor()
try:sql = "select * from t_area"cur.execute(sql)result = cur.fetchall()for row in result:print(row)# 在添加和修改的时候需要提交事务# con.commit()except Exception as e:# 回滚事务cur.rollback()cur.close()con.close()

3.3 Pymysql工具类封装

import pymysqlclass DBUtil:# 获取连接@classmethoddef get_connect(cls):# 创建连接return pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd=123456, charset='utf8')# 获取游标@classmethoddef get_cursor(cls, con):# 创建连接return con.cursor()# 释放资源@classmethoddef close(cls, cur, con):if cur:cur.close()if con:con.close()

案例

# 获取连接
from demo.utils.DBUtil import DBUtilcon = DBUtil.get_connect()
# 创建游标
cur = DBUtil.get_cursor(con)
# 编写和执行sql
sql = "select * from t_aera"
# 执行sql
result = cur.execute(sql)
# 查看结果
for row in result:print(row[3])
# 关闭资源
DBUtil.close(con, cur)

在这里插入图片描述

4 事务

4.1 案例

银行转账:

  1. 假如用户A给用户B转账300,用户A-300,用户B+300;转账成功(提交事务:commit)
  2. 假如用户A转账300,而用户B没有增加300,转账失败,这个事务不予提交,回滚事务(rollback)

4.2 事务概念

事务:是一套完整的业务逻辑,在业务逻辑中,困难包含多条sql语句,在这些sql执行的时候,要么都成功,要么都失败

4.3 事务特征

  1. 原子性:事务中的操作被看作一个单元,要么都成功,要么都失败
  2. 一致性:逻辑单中的每个操作不应该一部分操作一部分失败
  3. 隔离性:事务的中间状态对其他事务时不可见的(每个事务之间时互不影响的)
  4. 持久性:事务提交成功后,它会永久性保存在数据库中

5. requests库

5.1 概念

requests库是使用python编写的,可以调用该库的函数直接向服务器发送请求,并接收响应

5.2 角色定位

类似于Jmeter中http请求

5.3 安装

pip install requests

5.4 校验

在命令行输入pip list命令查找requests的名称和对应的版本号

5.5 requests之GET请求

import requests as requests# 请求
response = requests.get("https://api-v2.xdclass.net/api/rank/v1/hot_product")print("状态码:", response.status_code)
print("响应体:", response.text)

在这里插入图片描述

5.6 requests之POST请求

import requests as requestsdata = {"page": 1, "size": 4}
response = requests.post("https://api-v2.xdclass.net/api/play_record/v1/page", data=data)print("状态码:", response.status_code)
print("响应体:", response.text)

在这里插入图片描述

5.7 requests之PUT请求

import requests as requests# 请求
myJson = {"areaId": 55,"areaName": "上海","priority": "111"
}response = requests.put("http://localhost:8080/sa/modifyarea", json=myJson)print("状态码:", response.status_code)
print("响应体:", response.text)

5.8 requests之DELETE请求

import requests as requests# 请求
response = requests.delete("http://localhost:8080/sa/removearea", params={"areaId": "40"})print("状态码:", response.status_code)
print("响应体:", response.text)

5.9 补充

  • 四种操作代码结构基本一致
    • 导包
    • 操作
    • 获取响应
  • 区别
    1. 函数名不同(对应的请求方式也不同)
    2. 提交数据的参数名不同
      • get和delete使用params提交数据
      • post和put使用
        • data提交键值对数据
        • json提交JSON格式数据
  • 为什么get/delete和post/put提交数据使用的参数不一致?
    • get/delete请求格式在请求行,使用params
    • post/put请求格式在请求体,使用data/json

5.10 响应

import requestsresponse = requests.get("https://www.baidu.com")
# 响应行
print("url", response.url)
print("状态码", response.status_code)
print("-"*100)# 响应头
print("获取所有响应体头", response.headers)
print("获取所有cookie", response.cookies)
print("获取所有编码集", response.encoding)
print("-"*100)# 响应体
print("以文本的方式获取响应体", response.text)
# print("以二进制的方式获取响应体", response.content)
# print("以JSON的方式获取响应体", response.json())
print("-"*100)

在这里插入图片描述

5.11 登录案例

5.11.1实现思路

  1. 需求案例:先登录,登陆成成功后获取“订单页面”

    • login接口(post)–键值对提交数据(username和password)
    • order_list接口(get)
  2. cookie:

    • 例如:使用jmeter请求百度搜索接口时,会经常跳转到安全认证页面,原因是没有cookie,服务器识别不了身份,不认识
    • 解决方式:从浏览器中拿到一个BAIDUID,并使用cookie管理器组件进行管理
    • 存在的问题:获取cookie后,后面每一个接口实现都需要提交cookie,过程高度重复,requests库内置了相关实现的封装,封装了对cookie 的处理
    # 核心知识点:关联
    # 获取登录接口响应的 cookie,提取出来作为查询订单接口要提交的参数
    import requests
    # 访问接口1:访问登录接口
    response1 = requests.post("login接囗", data={"username": “xxx", "password":"yyy"})
    # 获取 cookie,再获取 cookie 中的 xXID 形式类似于{“xxID":“zzz"}
    id= response1.cookies.get("xxID")
    # 访问接口2:订单查询接口
    requests.get("查询订单接口",cookies={“xxID":id})
    
  3. Session:

    • 注意点: requests中的session是对 cookie的封装,并不是服务器端的 session,两者无关,只是重名
    import requests
    # 获取 session 对象
    mySession =requests.session()
    # 请求1:使用 session 登录
    #requests.post(...)
    response1 = mysession.post("1ogin接囗",data={"username":"xxx","password": "yyy"})
    # 请求2:使用 session 获取订单
    response2 = mysession.get("查询订单接口")
    

5.11.2 实现

  1. 需求:使用 requests库调用 tpshop登录功能的相关接口,完成登录操作,登录成功后获取“我的订单"页面(访问订单列表接口)

    相关接口:1.获取验证码:http://localhost/index.php?m=Home&c=User&a=verify GET(此接口返回验证码 和 cookie)
    2.登录:http://localhost/index.php?m=Home&c=User&a=do_login POST参数: {"username":"xxxxx","password":"yyyy","verify_code":"zzzz"},非 JSON 提交
    3.我的订单:http://localhost/Home/Order/order_list.html GET
    
  2. Cookie实现

import requests
# 请求
cookieId_response = requests.get("http://192.168.157.130/index.php?m=Home&c=User&a=verify")
print("状态码:", cookieId_response.status_code)
print("Cookie对象", cookieId_response.cookies)
# 获取cookies,PHPSESSID
id = cookieId_response.cookies.get("PHPSESSID")
print("Cookie=", id)
print("-"*100)
# 请求登录接口
data = {"username": "13012345678","password": "123456","verify_code": "8888"
}
# 获取cookie的ID的值
cookie = {"PHPSESSID": id}# 登录接口
res_login = requests.post("http://192.168.157.130/index.php?m=Home&c=User&a=do_login", data=data, cookies=cookie)
print("登录状态码:", res_login.status_code)
print("登录响应体:", res_login.text)
print("-"*100)
# 订单接口
order_login = requests.get("http://192.168.157.130/Home/Order/order_list.html", cookies=cookie)
print("订单状态码:", order_login.status_code)
print("订单响应体:", order_login.text)

在这里插入图片描述

  1. Session实现
import requests
# 创建session对象
sesion = requests.session()
print("-"*100)
# 请求登录接口
data = {"username": "13012345678","password": "123456","verify_code": "8888"
}# 登录接口
res_login = sesion.post("http://192.168.157.130/index.php?m=Home&c=User&a=do_login", data=data)
print("登录状态码:", res_login.status_code)
print("登录响应体:", res_login.text)
print("-"*100)
# 订单接口
order_login = sesion.get("http://192.168.157.130/Home/Order/order_list.html")
print("订单状态码:", order_login.status_code)
print("订单响应体:", order_login.text)

在这里插入图片描述

6. PyTest基础

pytest是python第三方的单元测试框架

6.1 pytest的配置文件

概述:

  • 不用配置文件的方式:
    1. pytest会找到项目下的test_xxx开头的py文件
    2. 以及该文件群下的Test开头的类
    3. 以及类下面test开头的函数
    4. 符合要求的测试函数都会被执行
  • 使用配置文件:可以通过配置来选择执行那些目录下的模块【更灵活】
    1. 项目下新建一个script模块
    2. 将测试脚本放在sccript目录中
    3. pytest的配置文件放在自动化项目目录下
    4. 配置文件名称为pytest.ini
    5. pytest.ini第一行的内容为【pytest】,后面逐行写具体的配置参数
    6. 美丽运行时会使用该配置文件中的配置

6.2 setup和teardown

概念

运行于测试方法的始末, 运行一次测试函数会执行一次 setup 和 teardown

有多少个测试函数就会运行多少次的 setup 和 teardown方法

代码

test_xxx.py

class TestLogin:# 函数级初始化方法def setup(self):print("---setup---")# 函数级结束def teardown(self):print("---teardown---")def test_a(self):print("test_a")assert 1    # 断言成功def test_b(self):print("test_b")assert 0    # 断言失败

结果

test_setup和teardown[39].py ---setup---	# 第1次运行 setup
test_a
.---teardown---	# 第1次运行 teardown
---setup---	# 第2次运行 setup
test_b
F---teardown---	# 第2次运行 teardown

应用场景

使用配置文件, 可以通过配置项来选择执行哪些目录下的哪些测试模块

使用方式

  1. 项目下新建一个 scripts 模块
  2. 将测试脚本放到 scripts 中
  3. pytest 的配置文件放在自动化项目目录下
  4. 配置文件名称为 pytest.ini
  5. pytest.ini 第一行的内容为 [pytest] , 后面逐行写具体的配置参数
  6. 命令行运行时会使用该配置文件中的配置

6.3 实现

示例

[pytest]
addopts = -s
testpaths = ./scripts
python_files = test_*.py
python_classes = Test*
python_functions = test_*

你写的时候可以直接拿来复制粘贴

参数解释:

addopts = -s 表示命令行参数

testpaths, python_files, python_classes, python_functions

表示执行哪一个包下面的哪些.py结尾的文件, 以及哪些前缀开头的类, 以及哪些前缀开头的测试函数

注意点

  1. 怎么确认配置文件被加载?
    • 通过控制台的 inifile 进行查看
  2. windows 可能出现 “gbk” 错误
    • 删除 ini 文件中的所有中文
  3. 在工作中这个文件也需要复制粘贴?
    • 是的, 一个项目只会用一个pytest.ini 文件, 只需要理解, 会修改就可以了

6.4 数据参数化

方法

@pytest.mark.parametrize("参数名", 参数值)参数对应的值: 类型必须为可迭代的类型, 一般使用 list

示例

    import pytestclass TestLogin:@pytest.mark.parametrize("params", [{"username": "zhangsan", "password": "111"}, {"username": "lisi", "password": "222"}])def test_a(self, params):print(params)print(params["username"])print(params["password"])

结果

test_login[43].py {'username': 'zhangsan', 'password': '111'}
zhangsan
111
.{'username': 'lisi', 'password': '222'}
lisi
222
.

参数化后, 有几组参数, 测试函数就会执行几次

6.5 测试报告插件

安装

# [推荐安装1.21.1的版本]命令行输入
pip install pytest-html==1.21.1

校验方式 pip list

使用

在配置文件中的命令行参数增加 --html=用户路径/xxx.html

6.6 集成思路

伪代码

在 scripts 包下的文件 test_xxx.py

# 测试类
class TestDemo:# 初始化函数def setup(self):self.session = requests.Session()# 资源销毁函数def teardown(self):self.session.close()# 测试函数1: 登录def test_login(self):写登录相关代码# 测试函数2: 我的订单def test_order(self):# 1.登录# 2.获取订单...如, # 3.断言

存在的问题

  • 参数化: 没有使用参数化动态导入数据
  • 封装: 测试函数中和请求业务相关的实现高度重复

在这里插入图片描述

7. 接口自动化实现

7.1 自动化流程

  1. 需求分析
  2. 挑选出需要做自动化测试的功能接口(编写测试计划)
  3. 设计测试用例
  4. 搭建测试环境(可选)
  5. 执行测试用例(执行前需要编写代码)
  6. 生成测试报告并分析结果

7.2 设计接口测试用例

  1. 功能描述
  2. url和请求方式
  3. 需要提交的数据
  4. 状态码和响应体

7.3 框架架构的图解

在这里插入图片描述

7.4 项目架构目录

  • api------>封装请求
  • scripts------>编写测试脚本
  • data------>存放测试数据
  • untils------>存放工具类
  • report------>测试报告
  • app.py------>存放常量
  • pytest.ini------>pytest配置文件

7.5 项目框架的实现

  1. 创建项目
  2. 创建pytest.ini(pytest的配置文件)
[pytest]
addopts = -s --html=report/report.html   # 将测试报告放入到report/report.htm的文件
testpath = ./scripts	# 放入测试脚本
python_files = test_*.py	# 以test_开头的脚本进行读取
python_classes = Test*	# 将Test开头的类文件读取
python_function = test_*	# 将test_开头的方法读取3. 
  1. 创建app.py(放入重复性常量)
BASE_URL = "127.0.0.1:8080"		# 基础地址:IP:端口号
AREA_URL = "/sa"	# 接口地址
  1. script(创建脚本目录)

创建test_area.py文件

import requestsfrom api.AreaAPI import AreaAPI
from api.AreaDBAPI import AreaDBAPIclass TestArea:def setup(self):self.session = requests.Session()self.area_api = AreaAPI(self.session)def teardown(self):self.session.close()# 测试查询列表接口def test_list_area(self):response = self.area_api.area_list_url()print("状态码 = ", response.status_code)print("响应体 = ", response.text)# 测试新增接口def test_add_area(self):data = {"areaName": "12","priority": "321"}response = self.area_api.add_area(data=data)print("状态码 = ", response.status_code)print("响应体 = ", response.text)# 测试修改接口def test_update_area(self):id = AreaDBAPI.select_id_by_name("12")json = {"areaId": id,"areaName": "123"}response = self.area_api.update_area(json=json)print("状态码 = ", response.status_code)print("响应体 = ", response.text)# 测试删除接口def test_remove_area(self):id = AreaDBAPI.select_id_by_name("123   ")# 需要删除的变量params = {"areaId": id}# 响应结果response = self.area_api.removeArea_url(params=params)print("状态码 = ", response.status_code)print("响应体 = ", response.text)
  1. 创建api目录(放入请求地址)

创建AreaAPI.py

from app import BASE_URL, AREA_URLclass AreaAPI:def __init__(self, session):self.session = sessionself.area_list_url = BASE_URL + AREA_URL + "/listarea"self.addArea_url = BASE_URL + AREA_URL + "/addArea"self.updateArea_url = BASE_URL + AREA_URL + "/updateArea"self.removeArea_url = BASE_URL + AREA_URL + "/removeArea"# 1查询areadef area_list(self):response = self.session.get(self.area_list_url)return response# 2新增areadef add_area(self, data):response = self.session.post(self.addArea_url,  data=data)return response# 3修改areadef update_area(self, json):response = self.session.put(self.updateArea_url, json=json)return response# 4删除areadef remove_area(self, params):response = self.session.delete(self.removeArea_url, params=params)return response

创建AreaDBAPI.py文件【用于数据库查询】

from utils.DBUtils import DBUtilsclass AreaDBAPI:@classmethoddef select_id_by_name(cls, area_name):# 获取连接con = DBUtils.get_connect()# 获取游标cur = DBUtils.get_cursor(con)# 编写sqlsql = "select area_id from area where area_name = `%s`" % (area_name)# 执行sqlcur.execute(sql)# 获取所有数据row = cur.fechall()# 释放资源DBUtils.close_res(con, cur)# 返回第一行第一列return row[0][0]
  1. 创建工具类目录(utils)

创建DBUtils.py

import pymysqlclass DBUtils:@classmethoddef get_connect(cls):# 获取连接return pymysql.Connect(host="127.0.0.1", user="root", password="123456", database="test", port=3306, charset="utf8")@classmethoddef get_cursor(cls, con):# 获取游标return con.cursor()@classmethoddef close_res(cls, con, cursor):# 释放资源if cursor:cursor.close()if con:con.close()

结果截图

在这里插入图片描述

8 总结

总结接口自动化各个目录之间的互相调用

以脚本为基础【test_area.py】

  1. 测试脚本[scripts]会调用api目录里面的文件
  2. api里面的文件会含有一些常量,它会调用app.py里面的数据
  3. 在进行修改或者删除数据的时候,一般会调用ID来进行修改或者删除,这时候test_area.py文件会先调用api里面的AreaDBAPI.py进行查询数据,在AreaDBAPI.py文件会调用DBUtils.py文件,先进行连接数据库,然后才根据sql查询数据,最后才会获得响应

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/345044.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

吊车报警的工作原理和使用场景_鼎跃安全

在现代建筑施工过程中,经常使用大型机械设备,如挖掘机、吊车、打桩机等,这些设备在施工过程中发挥着越来越重要的作用;同时,这些设备的作业频繁进行作业,对于接触到高压电线的风险也随之增加。大型机械设备…

Application Load Balancer-ALB

Application Load Balancer-ALB 什么是ALB开通ALB服务实现IPv4服务的负载均衡创建ALB实例创建服务器组添加后端服务器配置监听设置域名解析(可选)释放ALB实例 什么是ALB 在介绍ALB之前首先介绍一下负载均衡SLB,可以说SLB是负载均衡家族之首 …

测试开发之自动化篇 —— 使用Selenium IDE录制脚本!

今天,我们开始介绍基于开源Selenium工具的Web网站自动化测试。 Selenium包含了3大组件,分别为:1. Selenium IDE 基于Chrome和Firefox扩展的集成开发环境,可以录制、回放和导出不同语言的测试脚本。 2. WebDriver 包括一组为不同…

Adobe Illustrator 矢量图设计软件下载安装,Illustrator 轻松创建各种矢量图形

Adobe Illustrator,它不仅仅是一个简单的图形编辑工具,更是一个拥有丰富功能和强大性能的设计利器。 在这款软件中,用户可以通过各种精心设计的工具,轻松创建和编辑基于矢量路径的图形文件。这些矢量图形不仅具有高度的可编辑性&a…

“深入探讨Java中的对象拷贝:浅拷贝与深拷贝的差异与应用“

前言:在Java编程中,深拷贝(Deep Copy)与浅拷贝(Shallow Copy)是两个非常重要的概念。它们涉及到对象在内存中的复制方式,对于理解对象的引用、内存管理以及数据安全都至关重要。 ✨✨✨这里是秋…

springboot undertow 文件上传文件过大异常

io.undertow.server.RequestTooBigException: UT000020 Connection terminated as request was larger than xxxx 修改yaml文件中关于undertow的配置项 server:undertow:# HTTP POST请求最大的大小# 默认0,无限制max-http-post-size: ${SERVER_UNDERTOW_MAX_HTTP_…

小白教程--- kali(po解)WIFI密码 (图文教程)

kali学得好,牢饭少不了!!! 原理: 模拟WiFi的已连接设备,强制让其下线重连,获取其握手包,使用密码字典(宝丽)婆洁。 环境(准备工作)&a…

跨域、JSONP、CORS、Spring、Spring Security解决方案

概述 JavaScript出于安全方面的考虑,不允许跨域调用其他页面的对象。跨域是浏览器(如Chrome浏览器基于JS V8引擎,可以简单理解为JS解释器)的一种同源安全策略,是浏览器单方面限制脚本的跨域访问。因此,仅有…

【Java面试】十六、并发篇:线程基础

文章目录 1、进程和线程的区别2、并行和并发的区别3、创建线程的四种方式3.1 Runnable和Callable创建线程的区别3.2 线程的run和start 4、线程的所有状态与生命周期5、新建T1、T2、T3,如何保证线程的执行顺序6、notify和notifyAll方法有什么区别7、wait方法和sleep方…

Flutter Image源码分析

本文用于记录分析Imge图片加载流程源码分析学习笔记 切入点是Image.network,加载网络图片 构造方法会创建NetworkImage,加载图片的实现类,父类是ImageProvider 加载本地图片等等都是类似 下面进入_ImageState类 void resolveStreamForKey(ImageConfiguration configurat…

【云原生】基于windows环境搭建Docker

目录 一、Docker Desktop搭建 二、前置准备 2.1开启 Hyper-V 2.2 Hyper-V选项看不到问题解决 2.3 开启或升级wsl 三、安装过程 3.1 下载安装包 3.2 安装 Docker Desktop 3.2.1 Docker 图标一直处于starting状态问题解决 3.3 配置仓库与镜像 3.4 docker功能测试 四、…

C++中的一些困惑(长期更新中)

C中的一些困惑 文章目录 C中的一些困惑1. using std::具体命名与using namespace std;2. 【int \*p[10] 】与 【int (\*p)[10]】3. main()函数可带参,参从何来?4. constexpr函数的返回值可不为常量,那这时constexpr关键字作用是什么&#xff…

CTF Show MISC做题笔记

MISCX 30 题目压缩包为misc2.rar,其中包含三个文件:misc1.zip, flag.txt, hint.txt。其中后两个文件是加密的。 先解压出misc1.zip, 发现其中包含两个文件:misc.png和music.doc。其中后面文件是加密的。 解压出misc.png,发现图片尾部有消息:flag{flag…

一个简单的消息队列

目录 原理 实现代码 示例 原理 消息队列是一个先进先出栈,每次都处理第一项,处理完了过后会删除这个消息,这是一个简单的消息队列图: 实现代码 首先消息队列需要一个队列,我们用Python里的列表: self.…

Shell脚本学习_内置命令

目录 1.内置命令介绍: 2.Shell内置命令:alias设置别名 3.Shell内置命令:echo输出字符串 4.Shell内置命令:read读取控制台输入 5.Shell内置命令:exit退出 6.Shell内置命令:declare设置变量 1.内置命令…

【计算机毕业设计】283基于微信小程序校园订餐

🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板&#xff…

用python编撰一个电脑清理程序

自制一个电脑清理程序,有啥用呢?在电脑不装有清理软件的时候,可以解决自己电脑内存不足的情况。 1、设想需要删除指定文件夹中的临时文件和缓存文件。以下是代码。 import os import shutil def clean_folder(folder_path): for root,…

【备战蓝桥杯】蓝桥杯省一笔记:算法模板笔记(Java)

蓝桥杯 0、快读快写模板1、回文判定2、前缀和3、差分4、二分查找5、快速幂6、判断素数7、gcd&lcm8、进制转换9、位运算10、字符串常用API11、n的所有质因子12、n的质因子个数13、n的约数个数14、n阶乘的约数个数15、n的约数和16、阶乘 & 双阶乘17、自定义升序降序18、动…

Java----抽象类和接口

欢迎大家来这次博客-----抽象类和接口。 1.抽象类 1.1 抽象类概念 在Java中我们都是通过类来描述对象,但反过来并不是所有的类都是用来描述对象的。当一个类中没有足够的信息来描述一个具体对象,我们就将该类称为抽象类。 如上图中的Shape类&#xff…

Wireshark自定义Lua插件

背景: 常见的抓包工具有tcpdump和wireshark,二者可基于网卡进行抓包:tcpdump用于Linux环境抓包,而wireshark用于windows环境。抓包后需借助包分析工具对数据进行解析,将不可读的二进制数转换为可读的数据结构。 wires…